Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Sep;65(3):1135–1146. doi: 10.1016/S0006-3495(93)81173-1

Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application.

N O Petersen 1, P L Höddelius 1, P W Wiseman 1, O Seger 1, K E Magnusson 1
PMCID: PMC1225831  PMID: 8241393

Abstract

Measurement of receptor distributions on cell surfaces is one important aspect of understanding the mechanism whereby receptors function. In recent years, scanning fluorescence correlation spectroscopy has emerged as an excellent tool for making quantitative measurements of cluster sizes and densities. However, the measurements are slow and usually require fixed preparations. Moreover, while the precision is good, the accuracy is limited by the relatively small amount of information in each measurement, such that many are required. Here we present a novel extension of the scanning correlation spectroscopy that solves a number of the present problems. The new technique, which we call image correlation spectroscopy, is based on quantitative analysis of confocal scanning laser microscopy images. Since these can be generated in a matter of a second or so, the measurements become more rapid. The image is collected over a large cell area so that more sampling is done, improving the accuracy. The sacrifice is a lower resolution in the sampling, which leads to a lower precision. This compromise of precision in favor of speed and accuracy still provides an enormous advantage for image correlation spectroscopy over scanning correlation spectroscopy. The present work demonstrates the underlying theory, showing how the principles can be applied to measurements on standard fluorescent beads and changes in distribution of receptors for platelet-derived growth factor on human foreskin fibroblasts.

Full text

PDF
1139

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barak L. S., Webb W. W. Fluorescent low density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J Cell Biol. 1981 Sep;90(3):595–604. doi: 10.1083/jcb.90.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boonstra J., van Maurik P., Defize L. H., de Laat S. W., Leunissen J. L., Verkley A. J. Visualization of epidermal growth factor receptor in cryosections of cultured A431 cells by immuno-gold labeling. Eur J Cell Biol. 1985 Mar;36(2):209–216. [PubMed] [Google Scholar]
  3. Bourguignon L. Y., Bourguignon G. J. Capping and the cytoskeleton. Int Rev Cytol. 1984;87:195–224. doi: 10.1016/s0074-7696(08)62443-2. [DOI] [PubMed] [Google Scholar]
  4. Elson E. L., Reidler J. A. Analysis of cell surface interactions by measurements of lateral mobility. J Supramol Struct. 1979;12(4):481–489. doi: 10.1002/jss.400120408. [DOI] [PubMed] [Google Scholar]
  5. Feller M., Richardson C., Behnke W. D., Gruenstein E. High and low affinity binding sites for concanavalin A on normal human fibroblasts in vitro. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1027–1035. doi: 10.1016/0006-291x(77)90959-7. [DOI] [PubMed] [Google Scholar]
  6. Haigler H., Ash J. F., Singer S. J., Cohen S. Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3317–3321. doi: 10.1073/pnas.75.7.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hillman G. M., Schlessinger J. Lateral diffusion of epidermal growth factor complexed to its surface receptors does not account for the thermal sensitivity of patch formation and endocytosis. Biochemistry. 1982 Mar 30;21(7):1667–1672. doi: 10.1021/bi00536a030. [DOI] [PubMed] [Google Scholar]
  8. Kawamoto T., Sato J. D., Le A., Polikoff J., Sato G. H., Mendelsohn J. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1337–1341. doi: 10.1073/pnas.80.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ljungquist-Höddelius P., Lirvall M., Wasteson A., Magnusson K. E. Lateral diffusion of PDGF beta-receptors in human fibroblasts. Biosci Rep. 1991 Feb;11(1):43–52. doi: 10.1007/BF01118604. [DOI] [PubMed] [Google Scholar]
  10. Ljungquist P., Wasteson A., Magnusson K. E. Lateral diffusion of plasma membrane receptors labelled with either platelet-derived growth factor (PDGF) or wheat germ agglutinin (WGA) in human polymorphonuclear leukocytes and fibroblasts. Biosci Rep. 1989 Feb;9(1):63–73. doi: 10.1007/BF01117512. [DOI] [PubMed] [Google Scholar]
  11. Magde D., Elson E. L., Webb W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1974 Jan;13(1):29–61. doi: 10.1002/bip.1974.360130103. [DOI] [PubMed] [Google Scholar]
  12. McKanna J. A., Haigler H. T., Cohen S. Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5689–5693. doi: 10.1073/pnas.76.11.5689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palmer A. G., 3rd, Thompson N. L. Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy. Biophys J. 1987 Aug;52(2):257–270. doi: 10.1016/S0006-3495(87)83213-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Petersen N. O. Diffusion and aggregation in biological membranes. Can J Biochem Cell Biol. 1984 Nov;62(11):1158–1166. doi: 10.1139/o84-149. [DOI] [PubMed] [Google Scholar]
  15. Petersen N. O., Johnson D. C., Schlesinger M. J. Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J. 1986 Apr;49(4):817–820. doi: 10.1016/S0006-3495(86)83710-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Petersen N. O. Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J. 1986 Apr;49(4):809–815. doi: 10.1016/S0006-3495(86)83709-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Qian H., Elson E. L. On the analysis of high order moments of fluorescence fluctuations. Biophys J. 1990 Feb;57(2):375–380. doi: 10.1016/S0006-3495(90)82539-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rönnstrand L., Terracio L., Claesson-Welsh L., Heldin C. H., Rubin K. Characterization of two monoclonal antibodies reactive with the external domain of the platelet-derived growth factor receptor. J Biol Chem. 1988 Jul 25;263(21):10429–10435. [PubMed] [Google Scholar]
  19. Schlessinger J., Shechter Y., Willingham M. C., Pastan I. Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2659–2663. doi: 10.1073/pnas.75.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schlessinger J. Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci. 1988 Nov;13(11):443–447. doi: 10.1016/0968-0004(88)90219-8. [DOI] [PubMed] [Google Scholar]
  21. Schreiber A. B., Hoebeke J., Vray B., Strosberg A. D. Evidence for reversible microclustering of lentil lectin membrane receptors on HeLa cells. FEBS Lett. 1980 Mar 10;111(2):303–306. doi: 10.1016/0014-5793(80)80815-5. [DOI] [PubMed] [Google Scholar]
  22. St-Pierre P. R., Petersen N. O. Average density and size of microclusters of epidermal growth factor receptors on A431 cells. Biochemistry. 1992 Mar 10;31(9):2459–2463. doi: 10.1021/bi00124a004. [DOI] [PubMed] [Google Scholar]
  23. St-Pierre P. R., Petersen N. O. Relative ligand binding to small or large aggregates measured by scanning correlation spectroscopy. Biophys J. 1990 Aug;58(2):503–511. doi: 10.1016/S0006-3495(90)82395-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weissman M., Schindler H., Feher G. Determination of molecular weights by fluctuation spectroscopy: application to DNA. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2776–2780. doi: 10.1073/pnas.73.8.2776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yarden Y., Harari I., Schlessinger J. Purification of an active EGF receptor kinase with monoclonal antireceptor antibodies. J Biol Chem. 1985 Jan 10;260(1):315–319. [PubMed] [Google Scholar]
  26. van Belzen N., Rijken P. J., Hage W. J., de Laat S. W., Verkleij A. J., Boonstra J. Direct visualization and quantitative analysis of epidermal growth factor-induced receptor clustering. J Cell Physiol. 1988 Mar;134(3):413–420. doi: 10.1002/jcp.1041340312. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES