Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Oct;65(4):1445–1448. doi: 10.1016/S0006-3495(93)81210-4

Calcium ion regulation of chirality of beating flagellum of reactivated sea urchin spermatozoa.

S Ishijima 1, Y Hamaguchi 1
PMCID: PMC1225871  PMID: 8274638

Abstract

Near an interface, sea urchin spermatozoa swim almost in circles. The direction is usually clockwise at the lower surface of a coverslip and counterclockwise at the upper surface of a glass slide, when viewed from above. Examination of demembranated spermatozoa has shown that Ca2+ regulates the direction of the circular motion of spermatozoa reactivated with adenosine triphosphate (ATP). This finding suggests that Ca2+ changes the chirality of the three-dimensional bending waves of sperm flagella.

Full text

PDF
1446

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babcock D. F., Pfeiffer D. R. Independent elevation of cytosolic [Ca2+] and pH of mammalian sperm by voltage-dependent and pH-sensitive mechanisms. J Biol Chem. 1987 Nov 5;262(31):15041–15047. [PubMed] [Google Scholar]
  2. Brokaw C. J., Simonick T. F. Motility of triton-demembranated sea urchin sperm flagella during digestion by trypsin. J Cell Biol. 1977 Dec;75(3):650–665. doi: 10.1083/jcb.75.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Costello D. A new theory on the mechanics of ciliary and flagellar motility. II. Theoretical considerations. Biol Bull. 1973 Oct;145(2):292–309. doi: 10.2307/1540041. [DOI] [PubMed] [Google Scholar]
  4. Gibbons B. H. Intermittent swimming in live sea urchin sperm. J Cell Biol. 1980 Jan;84(1):1–12. doi: 10.1083/jcb.84.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ishijima S., Hamaguchi M. S., Naruse M., Ishijima S. A., Hamaguchi Y. Rotational movement of a spermatozoon around its long axis. J Exp Biol. 1992 Feb;163:15–31. doi: 10.1242/jeb.163.1.15. [DOI] [PubMed] [Google Scholar]
  6. Ishijima S., Hamaguchi Y. Relationship between direction of rolling and yawing of golden hamster and sea urchin spermatozoa. Cell Struct Funct. 1992 Oct;17(5):319–323. doi: 10.1247/csf.17.319. [DOI] [PubMed] [Google Scholar]
  7. Kamiya R. Extrusion and Rotation of the central-pair microtubules in detergent-treated Chlamydomonas flagella. Prog Clin Biol Res. 1982;80:169–173. doi: 10.1002/cm.970020732. [DOI] [PubMed] [Google Scholar]
  8. Mahanes M. S., Ochs D. L., Eng L. A. Cell calcium of ejaculated rabbit spermatozoa before and following in vitro capacitation. Biochem Biophys Res Commun. 1986 Jan 29;134(2):664–670. doi: 10.1016/s0006-291x(86)80471-5. [DOI] [PubMed] [Google Scholar]
  9. Miki-Noumura T., Kamiya R. Conformational change in the outer doublet microtubules from sea urchin sperm flagella. J Cell Biol. 1979 May;81(2):355–360. doi: 10.1083/jcb.81.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miki-Noumura T., Kamiya R. Shape of microtubules in solutions. Exp Cell Res. 1976 Feb;97(2):451–453. doi: 10.1016/0014-4827(76)90642-x. [DOI] [PubMed] [Google Scholar]
  11. Naito Y., Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science. 1972 May 5;176(4034):523–524. doi: 10.1126/science.176.4034.523. [DOI] [PubMed] [Google Scholar]
  12. Schackmann R. W., Chock P. B. Alteration of intracellular [Ca2+] in sea urchin sperm by the egg peptide speract. Evidence that increased intracellular Ca2+ is coupled to Na+ entry and increased intracellular pH. J Biol Chem. 1986 Jul 5;261(19):8719–8728. [PubMed] [Google Scholar]
  13. Simpson A. M., White I. G. Measurement and manipulation of cytoplasmic free calcium of ram and boar spermatozoa using quin 2. Cell Calcium. 1988 Feb;9(1):45–56. doi: 10.1016/0143-4160(88)90037-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES