Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Nov;65(5):1775–1787. doi: 10.1016/S0006-3495(93)81233-5

Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation.

C F Starmer 1, V N Biktashev 1, D N Romashko 1, M R Stepanov 1, O N Makarova 1, V I Krinsky 1
PMCID: PMC1225913  PMID: 8298011

Abstract

Cardiac tissue can display unusual responses to certain stimulation protocols. In the wake of a conditioning wave of excitation, spiral waves can be initiated by applying stimuli timed to occur during a period of vulnerability (VP). Although vulnerability is well known in cardiac and chemical media, the determinants of the VP and its boundaries have received little theoretical and analytical study. From numerical and analytical studies of reaction-diffusion equations, we have found that 1) vulnerability is an inherent property of Beeler-Reuter and FitzHugh-Nagumo models of excitable media; 2) the duration of the vulnerable window (VW) the one-dimensional analog of the VP, is sensitive to the medium properties and the size of the stimulus field; and 3) the amplitudes of the excitatory and recovery processes modulate the duration of the VW. The analytical results reveal macroscopic behavior (vulnerability) derived from the diffusion of excitation that is not observable at the level of isolated cells or single reaction units.

Full text

PDF
1775

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allessie M. A., Bonke F. I., Schopman F. J. Circus movement in rabbit atrial muscle as a mechanism of trachycardia. Circ Res. 1973 Jul;33(1):54–62. [PubMed] [Google Scholar]
  2. Balakhovskii I. S. Nekotorye rezhimy dvizheniia vozbuzhdeniia v ideal'noi vozbudimoi tkani. Biofizika. 1965;10(6):1063–1067. [PubMed] [Google Scholar]
  3. Beeler G. W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 1977 Jun;268(1):177–210. doi: 10.1113/jphysiol.1977.sp011853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell T. J. Resting and rate-dependent depression of maximum rate of depolarisation (Vmax) in guinea pig ventricular action potentials by mexiletine, disopyramide, and encainide. J Cardiovasc Pharmacol. 1983 Mar-Apr;5(2):291–296. doi: 10.1097/00005344-198303000-00021. [DOI] [PubMed] [Google Scholar]
  5. Campbell T. J., Vaughan Williams E. M. Voltage- and time-dependent depression of maximum rate of depolarisation of guinea-pig ventricular action potentials by two new antiarrhythmic drugs, flecainide and lorcainide. Cardiovasc Res. 1983 May;17(5):251–258. doi: 10.1093/cvr/17.5.251. [DOI] [PubMed] [Google Scholar]
  6. Crumb W. J., Jr, Clarkson C. W. Characterization of cocaine-induced block of cardiac sodium channels. Biophys J. 1990 Mar;57(3):589–599. doi: 10.1016/S0006-3495(90)82574-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gul'ko F. B., Petrov A. A. Mekhanizm obrazovaniia zamknutykh putei provedeniia v vozbudimykh sredakh. Biofizika. 1972 Mar-Apr;17(2):261–270. [PubMed] [Google Scholar]
  9. Kabas J. S., Blanchard S. M., Matsuyama Y., Long J. D., Hoffman G. W., Jr, Ellinwood E. H., Smith P. K., Strauss H. C. Cocaine-mediated impairment of cardiac conduction in the dog: a potential mechanism for sudden death after cocaine. J Pharmacol Exp Ther. 1990 Jan;252(1):185–191. [PubMed] [Google Scholar]
  10. Lechleiter J., Girard S., Peralta E., Clapham D. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science. 1991 Apr 5;252(5002):123–126. doi: 10.1126/science.2011747. [DOI] [PubMed] [Google Scholar]
  11. Nattel S. Frequency-dependent effects of amitriptyline on ventricular conduction and cardiac rhythm in dogs. Circulation. 1985 Oct;72(4):898–906. doi: 10.1161/01.cir.72.4.898. [DOI] [PubMed] [Google Scholar]
  12. Nesterenko V. V., Lastra A. A., Rosenshtraukh L. V., Starmer C. F. A proarrhythmic response to sodium channel blockade: modulation of the vulnerable period in guinea pig ventricular myocardium. J Cardiovasc Pharmacol. 1992 May;19(5):810–820. [PubMed] [Google Scholar]
  13. Quan W., Rudy Y. Unidirectional block and reentry of cardiac excitation: a model study. Circ Res. 1990 Feb;66(2):367–382. doi: 10.1161/01.res.66.2.367. [DOI] [PubMed] [Google Scholar]
  14. Schubert B., Hering S., Bodewei R., Rosenshtraukh L. V., Wollenberger A. Use- and voltage-dependent depression by ethmozine (moricizine) of the rapid inward sodium current in single rat ventricular muscle cells. J Cardiovasc Pharmacol. 1986 Mar-Apr;8(2):358–366. doi: 10.1097/00005344-198603000-00019. [DOI] [PubMed] [Google Scholar]
  15. Starmer C. F., Lancaster A. R., Lastra A. A., Grant A. O. Cardiac instability amplified by use-dependent Na channel blockade. Am J Physiol. 1992 Apr;262(4 Pt 2):H1305–H1310. doi: 10.1152/ajpheart.1992.262.4.H1305. [DOI] [PubMed] [Google Scholar]
  16. Starmer C. F., Lastra A. A., Nesterenko V. V., Grant A. O. Proarrhythmic response to sodium channel blockade. Theoretical model and numerical experiments. Circulation. 1991 Sep;84(3):1364–1377. doi: 10.1161/01.cir.84.3.1364. [DOI] [PubMed] [Google Scholar]
  17. Whitcomb D. C., Gilliam F. R., 3rd, Starmer C. F., Grant A. O. Marked QRS complex abnormalities and sodium channel blockade by propoxyphene reversed with lidocaine. J Clin Invest. 1989 Nov;84(5):1629–1636. doi: 10.1172/JCI114340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van Capelle F. J., Durrer D. Computer simulation of arrhythmias in a network of coupled excitable elements. Circ Res. 1980 Sep;47(3):454–466. doi: 10.1161/01.res.47.3.454. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES