Abstract
We performed hole-burning Stark effect experiments on cytochrome c in which the iron of the herne was either removed or replaced by Zn. According to the experiments, the free-base compound has an effective inversion center, even in the protein. The Zn compound, on the other hand, shows quite peculiar features: in the low-frequency range of the inhomogeneous band, it definitely has a dipole moment, as indicated by a splitting of the hole in the external field. However, in the maximum of the inhomogeneous band, a severe charge redistribution occurs, as the experiments show. In addition to the Stark experiments, we performed calculations of the electrostatic fields at the pyrrole rings and at the metal site of the heme group. We interpret our findings with a model based on structural hierarchies: the protein can exist in a few subconformations, which can be distinguished through the structure of the heme pocket. The different pocket structures support different structures of the chromophore, which, in turn, can be distinguished through their behavior in an external field. These distinct structures, in turn, correspond to a rather broad distribution of protein structures, which leave, however, the pocket structure largely unchanged. These structures show up in inhomogeneous broadening.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angiolillo P. J., Vanderkooi J. M. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c. Biophys J. 1995 Jun;68(6):2505–2518. doi: 10.1016/S0006-3495(95)80433-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anni H., Vanderkooi J. M., Mayne L. Structure of zinc-substituted cytochrome c: nuclear magnetic resonance and optical spectroscopic studies. Biochemistry. 1995 May 2;34(17):5744–5753. doi: 10.1021/bi00017a006. [DOI] [PubMed] [Google Scholar]
- Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., Iben I. E., Sauke T. B., Shyamsunder E., Young R. D. Protein states and proteinquakes. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5000–5004. doi: 10.1073/pnas.82.15.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
- Fidy J., Vanderkooi J. M., Zollfrank J., Friedrich J. More than two pyrrole tautomers of mesoporphyrin stabilized by a protein. High resolution optical spectroscopic study. Biophys J. 1992 Feb;61(2):381–391. doi: 10.1016/S0006-3495(92)81844-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Friedrich J. Hole burning spectroscopy and physics of proteins. Methods Enzymol. 1995;246:226–259. doi: 10.1016/0076-6879(95)46012-8. [DOI] [PubMed] [Google Scholar]
- Gafert J., Friedrich J., Parak F. Stark-effect experiments on photochemical holes in chromoproteins: protoporphyrin IX-substituted myoglobin. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2116–2120. doi: 10.1073/pnas.92.6.2116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
- Kador L, Jahn S, Haarer D, Silbey R. Contributions of the electrostatic and the dispersion interaction to the solvent shift in a dye-polymer system, as investigated by hole-burning spectroscopy. Phys Rev B Condens Matter. 1990 Jun 15;41(17):12215–12226. doi: 10.1103/physrevb.41.12215. [DOI] [PubMed] [Google Scholar]
- Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
- Ormos P., Ansari A., Braunstein D., Cowen B. R., Frauenfelder H., Hong M. K., Iben I. E., Sauke T. B., Steinbach P. J., Young R. D. Inhomogeneous broadening in spectral bands of carbonmonoxymyoglobin. The connection between spectral and functional heterogeneity. Biophys J. 1990 Feb;57(2):191–199. doi: 10.1016/S0006-3495(90)82522-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
- Thorn Leeson D, Wiersma DA. Real time observation of low-temperature protein motions. Phys Rev Lett. 1995 Mar 13;74(11):2138–2141. doi: 10.1103/PhysRevLett.74.2138. [DOI] [PubMed] [Google Scholar]
- Vanderkooi J. M., Adar F., Erecińska M. Metallocytochromes c: characterization of electronic absorption and emission spectra of Sn4+ and Zn2+ cytochromes c. Eur J Biochem. 1976 May 1;64(2):381–387. doi: 10.1111/j.1432-1033.1976.tb10312.x. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Gunner M. R., Sampogna R., Sharp K., Honig B. On the calculation of pKas in proteins. Proteins. 1993 Mar;15(3):252–265. doi: 10.1002/prot.340150304. [DOI] [PubMed] [Google Scholar]

