Abstract
The cardiac Na+, Ca2+ exchanger (NCX1) is thought to achieve a high turnover rate, but all estimates to date are indirect. Two new strategies demonstrate that maximum unitary exchange currents are about 1 fA (6000 unitary charges per s) and that they fluctuate between on and off levels similar to ion channel currents. First, exchange current noise has been identified in small cardiac patches with properties expected for a gated transport process. Noise power density spectra correlate well with exchanger inactivation kinetics, and the noise has a predicted bell-shaped dependence on the activation states of the exchanger. From the magnitudes of exchange current noise, maximum unitary exchange currents are estimated to be 0.6-1.3 fA. Second, charge movements with rates of approximately 5000 s-1 have been isolated for the transport of both Na+ and Ca2+ in giant membrane patches using nonsaturating ion concentrations. The Na+ transport reactions are disabled or "immobilized" by exchanger inactivation reactions, thus confirming that inactivation generates fully inactive exchanger states.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cammack J. N., Rakhilin S. V., Schwartz E. A. A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron. 1994 Oct;13(4):949–960. doi: 10.1016/0896-6273(94)90260-7. [DOI] [PubMed] [Google Scholar]
- Cammack J. N., Schwartz E. A. Channel behavior in a gamma-aminobutyrate transporter. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):723–727. doi: 10.1073/pnas.93.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheon J., Reeves J. P. Site density of the sodium-calcium exchange carrier in reconstituted vesicles from bovine cardiac sarcolemma. J Biol Chem. 1988 Feb 15;263(5):2309–2315. [PubMed] [Google Scholar]
- DeCoursey T. E., Cherny V. V. Voltage-activated hydrogen ion currents. J Membr Biol. 1994 Sep;141(3):203–223. doi: 10.1007/BF00235130. [DOI] [PubMed] [Google Scholar]
- DeFelice L. J., Blakely R. D. Pore models for transporters? Biophys J. 1996 Feb;70(2):579–580. doi: 10.1016/S0006-3495(96)79604-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehara T., Matsuoka S., Noma A. Measurement of reversal potential of Na+-Ca2+ exchange current in single guinea-pig ventricular cells. J Physiol. 1989 Mar;410:227–249. doi: 10.1113/jphysiol.1989.sp017530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairman W. A., Vandenberg R. J., Arriza J. L., Kavanaugh M. P., Amara S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995 Jun 15;375(6532):599–603. doi: 10.1038/375599a0. [DOI] [PubMed] [Google Scholar]
- Fidler N., Fernandez J. M. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys J. 1989 Dec;56(6):1153–1162. doi: 10.1016/S0006-3495(89)82762-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilgemann D. W. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science. 1994 Mar 11;263(5152):1429–1432. doi: 10.1126/science.8128223. [DOI] [PubMed] [Google Scholar]
- Hilgemann D. W., Collins A., Matsuoka S. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J Gen Physiol. 1992 Dec;100(6):933–961. doi: 10.1085/jgp.100.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilgemann D. W., Collins A. Mechanism of cardiac Na(+)-Ca2+ exchange current stimulation by MgATP: possible involvement of aminophospholipid translocase. J Physiol. 1992 Aug;454:59–82. doi: 10.1113/jphysiol.1992.sp019254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilgemann D. W., Matsuoka S., Nagel G. A., Collins A. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J Gen Physiol. 1992 Dec;100(6):905–932. doi: 10.1085/jgp.100.6.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilgemann D. W., Nicoll D. A., Philipson K. D. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature. 1991 Aug 22;352(6337):715–718. doi: 10.1038/352715a0. [DOI] [PubMed] [Google Scholar]
- Hilgemann D. W. The cardiac Na-Ca exchanger in giant membrane patches. Ann N Y Acad Sci. 1996 Apr 15;779:136–158. doi: 10.1111/j.1749-6632.1996.tb44783.x. [DOI] [PubMed] [Google Scholar]
- Kappl M., Hartung K. Kinetics of Na-Ca exchange current after a Ca2+ concentration jump. Ann N Y Acad Sci. 1996 Apr 15;779:290–292. doi: 10.1111/j.1749-6632.1996.tb44799.x. [DOI] [PubMed] [Google Scholar]
- Khananshvili D., Shaulov G., Weil-Maslansky E., Baazov D. Positively charged cyclic hexapeptides, novel blockers for the cardiac sarcolemma Na(+)-Ca2+ exchanger. J Biol Chem. 1995 Jul 7;270(27):16182–16188. doi: 10.1074/jbc.270.27.16182. [DOI] [PubMed] [Google Scholar]
- Larsson H. P., Picaud S. A., Werblin F. S., Lecar H. Noise analysis of the glutamate-activated current in photoreceptors. Biophys J. 1996 Feb;70(2):733–742. doi: 10.1016/S0006-3495(96)79613-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J. M., Kimura J. Translocation mechanism of Na-Ca exchange in single cardiac cells of guinea pig. J Gen Physiol. 1990 Oct;96(4):777–788. doi: 10.1085/jgp.96.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z., Nicoll D. A., Collins A., Hilgemann D. W., Filoteo A. G., Penniston J. T., Weiss J. N., Tomich J. M., Philipson K. D. Identification of a peptide inhibitor of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. J Biol Chem. 1991 Jan 15;266(2):1014–1020. [PubMed] [Google Scholar]
- Lu C. C., Kabakov A., Markin V. S., Mager S., Frazier G. A., Hilgemann D. W. Membrane transport mechanisms probed by capacitance measurements with megahertz voltage clamp. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11220–11224. doi: 10.1073/pnas.92.24.11220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Läuger P. Voltage dependence of sodium-calcium exchange: predictions from kinetic models. J Membr Biol. 1987;99(1):1–11. doi: 10.1007/BF01870617. [DOI] [PubMed] [Google Scholar]
- Mager S., Min C., Henry D. J., Chavkin C., Hoffman B. J., Davidson N., Lester H. A. Conducting states of a mammalian serotonin transporter. Neuron. 1994 Apr;12(4):845–859. doi: 10.1016/0896-6273(94)90337-9. [DOI] [PubMed] [Google Scholar]
- Matsuoka S., Hilgemann D. W. Inactivation of outward Na(+)-Ca2+ exchange current in guinea-pig ventricular myocytes. J Physiol. 1994 May 1;476(3):443–458. doi: 10.1113/jphysiol.1994.sp020146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuoka S., Hilgemann D. W. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol. 1992 Dec;100(6):963–1001. doi: 10.1085/jgp.100.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakao M., Gadsby D. C. Voltage dependence of Na translocation by the Na/K pump. Nature. 1986 Oct 16;323(6089):628–630. doi: 10.1038/323628a0. [DOI] [PubMed] [Google Scholar]
- Nicoll D. A., Longoni S., Philipson K. D. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990 Oct 26;250(4980):562–565. doi: 10.1126/science.1700476. [DOI] [PubMed] [Google Scholar]
- Niggli E., Lederer W. J. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991 Feb 14;349(6310):621–624. doi: 10.1038/349621a0. [DOI] [PubMed] [Google Scholar]
- Powell T., Noma A., Shioya T., Kozlowski R. Z. Turnover rate of the cardiac Na(+)-Ca2+ exchanger in guinea-pig ventricular myocytes. J Physiol. 1993 Dec;472:45–53. doi: 10.1113/jphysiol.1993.sp019935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz E. A., Tachibana M. Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J Physiol. 1990 Jul;426:43–80. doi: 10.1113/jphysiol.1990.sp018126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shieh B. H., Xia Y., Sparkes R. S., Klisak I., Lusis A. J., Nicoll D. A., Philipson K. D. Mapping of the gene for the cardiac sarcolemmal Na(+)-Ca2+ exchanger to human chromosome 2p21-p23. Genomics. 1992 Mar;12(3):616–617. doi: 10.1016/0888-7543(92)90459-6. [DOI] [PubMed] [Google Scholar]
- Umbach J. A., Coady M. J., Wright E. M. Intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic. Biophys J. 1990 Jun;57(6):1217–1224. doi: 10.1016/S0006-3495(90)82640-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zweifach A., Lewis R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6295–6299. doi: 10.1073/pnas.90.13.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]