Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Oct;71(4):2213–2221. doi: 10.1016/S0006-3495(96)79422-5

Chaperonins GroEL and GroES: views from atomic force microscopy.

J Mou 1, S Sheng 1, R Ho 1, Z Shao 1
PMCID: PMC1233689  PMID: 8889197

Abstract

The Escherichia coli chaperonins, GroEL and GroES, as well as their complexes in the presence of a nonhydrolyzable nucleotide AMP-PNP, have been imaged with the atomic force microscope (AFM). We demonstrate that both GroEL and GroES that have been adsorbed to a mica surface can be resolved directly by the AFM in aqueous solution at room temperature. However, with glutaraldehyde fixation of already adsorbed molecules, the resolution of both GroEL and GroES was further improved, as all seven subunits were well resolved without any image processing. We also found that chemical fixation was necessary for the contact mode AFM to image GroEL/ES complexes, and in the AFM images. GroEL with GroES bound can be clearly distinguished from those without. The GroEL/ES complex was about 5 nm higher than GroEL alone, indicating a 2 nm upward movement of the apical domains of GroEL. Using a slightly larger probe force, unfixed GroEL could be dissected: the upper heptamer was removed to expose the contact surface of the two heptamers. These results clearly demonstrate the usefulness of cross-linking agents for the determination of molecular structures with the AFM. They also pave the way for using the AFM to study the structural basis for the function of GroE system and other molecular chaperones.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azem A., Kessel M., Goloubinoff P. Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. Science. 1994 Jul 29;265(5172):653–656. doi: 10.1126/science.7913553. [DOI] [PubMed] [Google Scholar]
  2. Boisvert D. C., Wang J., Otwinowski Z., Horwich A. L., Sigler P. B. The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Struct Biol. 1996 Feb;3(2):170–177. doi: 10.1038/nsb0296-170. [DOI] [PubMed] [Google Scholar]
  3. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
  4. Chandrasekhar G. N., Tilly K., Woolford C., Hendrix R., Georgopoulos C. Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem. 1986 Sep 15;261(26):12414–12419. [PubMed] [Google Scholar]
  5. Chen S., Roseman A. M., Hunter A. S., Wood S. P., Burston S. G., Ranson N. A., Clarke A. R., Saibil H. R. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature. 1994 Sep 15;371(6494):261–264. doi: 10.1038/371261a0. [DOI] [PubMed] [Google Scholar]
  6. Engel A., Hayer-Hartl M. K., Goldie K. N., Pfeifer G., Hegerl R., Müller S., da Silva A. C., Baumeister W., Hartl F. U. Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes. Science. 1995 Aug 11;269(5225):832–836. doi: 10.1126/science.7638600. [DOI] [PubMed] [Google Scholar]
  7. Fayet O., Ziegelhoffer T., Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 1989 Mar;171(3):1379–1385. doi: 10.1128/jb.171.3.1379-1385.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gao Y., Thomas J. O., Chow R. L., Lee G. H., Cowan N. J. A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell. 1992 Jun 12;69(6):1043–1050. doi: 10.1016/0092-8674(92)90622-j. [DOI] [PubMed] [Google Scholar]
  9. Gray T. E., Fersht A. R. Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett. 1991 Nov 4;292(1-2):254–258. doi: 10.1016/0014-5793(91)80878-7. [DOI] [PubMed] [Google Scholar]
  10. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  11. Harris J. R., Plückthun A., Zahn R. Transmission electron microscopy of GroEL, GroES, and the symmetrical GroEL/ES complex. J Struct Biol. 1994 May-Jun;112(3):216–230. doi: 10.1006/jsbi.1994.1022. [DOI] [PubMed] [Google Scholar]
  12. Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P., Hendrix R. W., Ellis R. J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May 26;333(6171):330–334. doi: 10.1038/333330a0. [DOI] [PubMed] [Google Scholar]
  13. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  14. Hendrix R. W. Purification and properties of groE, a host protein involved in bacteriophage assembly. J Mol Biol. 1979 Apr 15;129(3):375–392. doi: 10.1016/0022-2836(79)90502-3. [DOI] [PubMed] [Google Scholar]
  15. Hoh J. H., Lal R., John S. A., Revel J. P., Arnsdorf M. F. Atomic force microscopy and dissection of gap junctions. Science. 1991 Sep 20;253(5026):1405–1408. doi: 10.1126/science.1910206. [DOI] [PubMed] [Google Scholar]
  16. Hohn T., Hohn B., Engel A., Wurtz M., Smith P. R. Isolation and characterization of the host protein groE involved in bacteriophage lambda assembly. J Mol Biol. 1979 Apr 15;129(3):359–373. doi: 10.1016/0022-2836(79)90501-1. [DOI] [PubMed] [Google Scholar]
  17. Hunt J. F., Weaver A. J., Landry S. J., Gierasch L., Deisenhofer J. The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature. 1996 Jan 4;379(6560):37–45. doi: 10.1038/379037a0. [DOI] [PubMed] [Google Scholar]
  18. Hutchinson E. G., Tichelaar W., Hofhaus G., Weiss H., Leonard K. R. Identification and electron microscopic analysis of a chaperonin oligomer from Neurospora crassa mitochondria. EMBO J. 1989 May;8(5):1485–1490. doi: 10.1002/j.1460-2075.1989.tb03532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ill C. R., Keivens V. M., Hale J. E., Nakamura K. K., Jue R. A., Cheng S., Melcher E. D., Drake B., Smith M. C. A COOH-terminal peptide confers regiospecific orientation and facilitates atomic force microscopy of an IgG1. Biophys J. 1993 Mar;64(3):919–924. doi: 10.1016/S0006-3495(93)81452-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jackson G. S., Staniforth R. A., Halsall D. J., Atkinson T., Holbrook J. J., Clarke A. R., Burston S. G. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry. 1993 Mar 16;32(10):2554–2563. doi: 10.1021/bi00061a013. [DOI] [PubMed] [Google Scholar]
  21. Kawata Y., Hongo K., Nosaka K., Furutsu Y., Mizobata T., Nagai J. The role of ATP hydrolysis in the function of the chaperonin GroEL: dynamic complex formation with GroES. FEBS Lett. 1995 Aug 7;369(2-3):283–286. doi: 10.1016/0014-5793(95)00768-5. [DOI] [PubMed] [Google Scholar]
  22. Lal R., John S. A. Biological applications of atomic force microscopy. Am J Physiol. 1994 Jan;266(1 Pt 1):C1–21. doi: 10.1152/ajpcell.1994.266.1.C1. [DOI] [PubMed] [Google Scholar]
  23. Landry S. J., Gierasch L. M. Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu Rev Biophys Biomol Struct. 1994;23:645–669. doi: 10.1146/annurev.bb.23.060194.003241. [DOI] [PubMed] [Google Scholar]
  24. Landry S. J., Zeilstra-Ryalls J., Fayet O., Georgopoulos C., Gierasch L. M. Characterization of a functionally important mobile domain of GroES. Nature. 1993 Jul 15;364(6434):255–258. doi: 10.1038/364255a0. [DOI] [PubMed] [Google Scholar]
  25. Langer T., Pfeifer G., Martin J., Baumeister W., Hartl F. U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 1992 Dec;11(13):4757–4765. doi: 10.1002/j.1460-2075.1992.tb05581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Llorca O., Marco S., Carrascosa J. L., Valpuesta J. M. The formation of symmetrical GroEL-GroES complexes in the presence of ATP. FEBS Lett. 1994 May 30;345(2-3):181–186. doi: 10.1016/0014-5793(94)00432-3. [DOI] [PubMed] [Google Scholar]
  27. Lorimer G. H. GroEL structure: a new chapter on assisted folding. Structure. 1994 Dec 15;2(12):1125–1128. doi: 10.1016/s0969-2126(94)00114-6. [DOI] [PubMed] [Google Scholar]
  28. Lorimer G. H., Todd M. J. GroE structures galore. Nat Struct Biol. 1996 Feb;3(2):116–121. doi: 10.1038/nsb0296-116. [DOI] [PubMed] [Google Scholar]
  29. Mande S. C., Mehra V., Bloom B. R., Hol W. G. Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae. Science. 1996 Jan 12;271(5246):203–207. doi: 10.1126/science.271.5246.203. [DOI] [PubMed] [Google Scholar]
  30. Mayhew M., Hartl F. U. Lord of the rings: GroES structure. Science. 1996 Jan 12;271(5246):161–162. doi: 10.1126/science.271.5246.161. [DOI] [PubMed] [Google Scholar]
  31. McMullin T. W., Hallberg R. L. A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol Cell Biol. 1988 Jan;8(1):371–380. doi: 10.1128/mcb.8.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mou J., Czajkowsky D. M., Sheng S. J., Ho R., Shao Z. High resolution surface structure of E. coli GroES oligomer by atomic force microscopy. FEBS Lett. 1996 Feb 26;381(1-2):161–164. doi: 10.1016/0014-5793(96)00112-3. [DOI] [PubMed] [Google Scholar]
  33. Mou J., Czajkowsky D. M., Zhang Y., Shao Z. High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett. 1995 Sep 11;371(3):279–282. doi: 10.1016/0014-5793(95)00906-p. [DOI] [PubMed] [Google Scholar]
  34. Mou J., Yang J., Shao Z. Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J Mol Biol. 1995 May 5;248(3):507–512. doi: 10.1006/jmbi.1995.0238. [DOI] [PubMed] [Google Scholar]
  35. Müller D. J., Schabert F. A., Büldt G., Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J. 1995 May;68(5):1681–1686. doi: 10.1016/S0006-3495(95)80345-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ohnishi S., Hara M., Furuno T., Sasabe H. Imaging the ordered arrays of water-soluble protein ferritin with the atomic force microscope. Biophys J. 1992 Nov;63(5):1425–1431. doi: 10.1016/S0006-3495(92)81719-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Radmacher M., Fritz M., Hansma H. G., Hansma P. K. Direct observation of enzyme activity with the atomic force microscope. Science. 1994 Sep 9;265(5178):1577–1579. doi: 10.1126/science.8079171. [DOI] [PubMed] [Google Scholar]
  38. Saibil H. R., Zheng D., Roseman A. M., Hunter A. S., Watson G. M., Chen S., Auf Der Mauer A., O'Hara B. P., Wood S. P., Mann N. H. ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr Biol. 1993 May 1;3(5):265–273. doi: 10.1016/0960-9822(93)90176-o. [DOI] [PubMed] [Google Scholar]
  39. Schabert F. A., Henn C., Engel A. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science. 1995 Apr 7;268(5207):92–94. doi: 10.1126/science.7701347. [DOI] [PubMed] [Google Scholar]
  40. Schmidt M., Buchner J., Todd M. J., Lorimer G. H., Viitanen P. V. On the role of groES in the chaperonin-assisted folding reaction. Three case studies. J Biol Chem. 1994 Apr 8;269(14):10304–10311. [PubMed] [Google Scholar]
  41. Schmidt M., Rutkat K., Rachel R., Pfeifer G., Jaenicke R., Viitanen P., Lorimer G., Buchner J. Symmetric complexes of GroE chaperonins as part of the functional cycle. Science. 1994 Jul 29;265(5172):656–659. doi: 10.1126/science.7913554. [DOI] [PubMed] [Google Scholar]
  42. Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
  43. Shao Z., Yang J., Somlyo A. P. Biological atomic force microscopy: from microns to nanometers and beyond. Annu Rev Cell Dev Biol. 1995;11:241–265. doi: 10.1146/annurev.cb.11.110195.001325. [DOI] [PubMed] [Google Scholar]
  44. Sigler P. B., Horwich A. L. Unliganded GroEL at 2.8 A: structure and functional implications. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):113–119. doi: 10.1098/rstb.1995.0052. [DOI] [PubMed] [Google Scholar]
  45. Thiyagarajan P., Henderson S. J., Joachimiak A. Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering. Structure. 1996 Jan 15;4(1):79–88. doi: 10.1016/s0969-2126(96)00011-1. [DOI] [PubMed] [Google Scholar]
  46. Thomas D., Schultz P., Steven A. C., Wall J. S. Mass analysis of biological macromolecular complexes by STEM. Biol Cell. 1994;80(2-3):181–192. doi: 10.1111/j.1768-322x.1994.tb00929.x. [DOI] [PubMed] [Google Scholar]
  47. Tilly K., Murialdo H., Georgopoulos C. Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1629–1633. doi: 10.1073/pnas.78.3.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Todd M. J., Boudkin O., Freire E., Lorimer G. H. GroES and the chaperonin-assisted protein folding cycle: GroES has no affinity for nucleotides. FEBS Lett. 1995 Feb 13;359(2-3):123–125. doi: 10.1016/0014-5793(95)00021-z. [DOI] [PubMed] [Google Scholar]
  49. Todd M. J., Viitanen P. V., Lorimer G. H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science. 1994 Jul 29;265(5172):659–666. doi: 10.1126/science.7913555. [DOI] [PubMed] [Google Scholar]
  50. Todd M. J., Viitanen P. V., Lorimer G. H. Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry. 1993 Aug 24;32(33):8560–8567. doi: 10.1021/bi00084a024. [DOI] [PubMed] [Google Scholar]
  51. Trent J. D., Nimmesgern E., Wall J. S., Hartl F. U., Horwich A. L. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature. 1991 Dec 12;354(6353):490–493. doi: 10.1038/354490a0. [DOI] [PubMed] [Google Scholar]
  52. Viitanen P. V., Lorimer G. H., Seetharam R., Gupta R. S., Oppenheim J., Thomas J. O., Cowan N. J. Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J Biol Chem. 1992 Jan 15;267(2):695–698. [PubMed] [Google Scholar]
  53. Weissman J. S., Rye H. S., Fenton W. A., Beechem J. M., Horwich A. L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell. 1996 Feb 9;84(3):481–490. doi: 10.1016/s0092-8674(00)81293-3. [DOI] [PubMed] [Google Scholar]
  54. Yang J., Mou J., Shao Z. Molecular resolution atomic force microscopy of soluble proteins in solution. Biochim Biophys Acta. 1994 Mar 2;1199(2):105–114. doi: 10.1016/0304-4165(94)90104-x. [DOI] [PubMed] [Google Scholar]
  55. Yang J., Mou J., Shao Z. Structure and stability of pertussis toxin studied by in situ atomic force microscopy. FEBS Lett. 1994 Jan 24;338(1):89–92. doi: 10.1016/0014-5793(94)80122-3. [DOI] [PubMed] [Google Scholar]
  56. Yang J., Mou J., Yuan J. Y., Shao Z. The effect of deformation on the lateral resolution of atomic force microscopy. J Microsc. 1996 May;182(Pt 2):106–113. doi: 10.1046/j.1365-2818.1996.140422.x. [DOI] [PubMed] [Google Scholar]
  57. Yang J., Tamm L. K., Tillack T. W., Shao Z. New approach for atomic force microscopy of membrane proteins. The imaging of cholera toxin. J Mol Biol. 1993 Jan 20;229(2):286–290. doi: 10.1006/jmbi.1993.1033. [DOI] [PubMed] [Google Scholar]
  58. Zondlo J., Fisher K. E., Lin Z., Ducote K. R., Eisenstein E. Monomer-heptamer equilibrium of the Escherichia coli chaperonin GroES. Biochemistry. 1995 Aug 22;34(33):10334–10339. doi: 10.1021/bi00033a003. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES