Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Dec;71(6):3098–3109. doi: 10.1016/S0006-3495(96)79504-8

Interaction between fast and slow inactivation in Skm1 sodium channels.

D E Featherstone 1, J E Richmond 1, P C Ruben 1
PMCID: PMC1233799  PMID: 8968581

Abstract

Rat skeletal muscle (Skm1) sodium channel alpha and beta 1 subunits were coexpressed in Xenopus oocytes, and resulting sodium currents were recorded from on-cell macropatches. First, the kinetics and steady-state probability of both fast and slow inactivation in Skm1 wild type (WT) sodium channels were characterized. Next, we confirmed that mutation of IFM to QQQ (IFM1303QQQ) in the DIII-IV 'inactivation loop' completely removed fast inactivation at all voltages. This mutation was then used to characterize Skm1 slow inactivation without the presence of fast inactivation. The major findings of this paper are as follows: 1) Even with complete removal of fast inactivation by the IFM1303QQQ mutation, slow inactivation remains intact. 2) In WT channels, approximately 20% of channels fail to slow-inactivate after fast-inactivating, even at very positive potentials. 3) Selective removal of fast inactivation by IFM1303QQQ allows slow inactivation to occur more quickly and completely than in WT. We conclude that fast inactivation reduces the probability of subsequent slow inactivation.

Full text

PDF
3098

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bendahhou S., Cummins T. R., Potts J. F., Tong J., Agnew W. S. Serine-1321-independent regulation of the mu 1 adult skeletal muscle Na+ channel by protein kinase C. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12003–12007. doi: 10.1073/pnas.92.26.12003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bezanilla F., Taylor R. E., Fernández J. M. Distribution and kinetics of membrane dielectric polarization. 1. Long-term inactivation of gating currents. J Gen Physiol. 1982 Jan;79(1):21–40. doi: 10.1085/jgp.79.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Catterall W. A. Structure and function of voltage-gated ion channels. Trends Neurosci. 1993 Dec;16(12):500–506. doi: 10.1016/0166-2236(93)90193-p. [DOI] [PubMed] [Google Scholar]
  5. Chen C., Cannon S. C. Modulation of Na+ channel inactivation by the beta 1 subunit: a deletion analysis. Pflugers Arch. 1995 Dec;431(2):186–195. doi: 10.1007/BF00410190. [DOI] [PubMed] [Google Scholar]
  6. Cummins T. R., Sigworth F. J. Impaired slow inactivation in mutant sodium channels. Biophys J. 1996 Jul;71(1):227–236. doi: 10.1016/S0006-3495(96)79219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hsu H., Huang E., Yang X. C., Karschin A., Labarca C., Figl A., Ho B., Davidson N., Lester H. A. Slow and incomplete inactivations of voltage-gated channels dominate encoding in synthetic neurons. Biophys J. 1993 Sep;65(3):1196–1206. doi: 10.1016/S0006-3495(93)81153-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Numann R., Hauschka S. D., Catterall W. A., Scheuer T. Modulation of skeletal muscle sodium channels in a satellite cell line by protein kinase C. J Neurosci. 1994 Jul;14(7):4226–4236. doi: 10.1523/JNEUROSCI.14-07-04226.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nuss H. B., Chiamvimonvat N., Pérez-García M. T., Tomaselli G. F., Marbán E. Functional association of the beta 1 subunit with human cardiac (hH1) and rat skeletal muscle (mu 1) sodium channel alpha subunits expressed in Xenopus oocytes. J Gen Physiol. 1995 Dec;106(6):1171–1191. doi: 10.1085/jgp.106.6.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Quandt F. N. Burst kinetics of sodium channels which lack fast inactivation in mouse neuroblastoma cells. J Physiol. 1987 Nov;392:563–585. doi: 10.1113/jphysiol.1987.sp016797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rudy B. Inactivation in Myxicola giant axons responsible for slow and accumulative adaptation phenomena. J Physiol. 1981 Mar;312:531–549. doi: 10.1113/jphysiol.1981.sp013642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rudy B. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J Physiol. 1978 Oct;283:1–21. doi: 10.1113/jphysiol.1978.sp012485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ruff R. L., Simoncini L., Stühmer W. Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J Physiol. 1987 Feb;383:339–348. doi: 10.1113/jphysiol.1987.sp016412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruff R. L., Simoncini L., Stühmer W. Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle Nerve. 1988 May;11(5):502–510. doi: 10.1002/mus.880110514. [DOI] [PubMed] [Google Scholar]
  15. Ruff R. L., Whittlesey D. Comparison of Na+ currents from type IIa and IIb human intercostal muscle fibers. Am J Physiol. 1993 Jul;265(1 Pt 1):C171–C177. doi: 10.1152/ajpcell.1993.265.1.C171. [DOI] [PubMed] [Google Scholar]
  16. Ruff R. L., Whittlesey D. Na+ currents near and away from endplates on human fast and slow twitch muscle fibers. Muscle Nerve. 1993 Sep;16(9):922–929. doi: 10.1002/mus.880160906. [DOI] [PubMed] [Google Scholar]
  17. Salgado V. L., Yeh J. Z., Narahashi T. Voltage-dependent removal of sodium inactivation by N-bromoacetamide and pronase. Biophys J. 1985 Apr;47(4):567–571. doi: 10.1016/S0006-3495(85)83952-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sawczuk A., Powers R. K., Binder M. D. Spike frequency adaptation studied in hypoglossal motoneurons of the rat. J Neurophysiol. 1995 May;73(5):1799–1810. doi: 10.1152/jn.1995.73.5.1799. [DOI] [PubMed] [Google Scholar]
  19. Simoncini L., Stühmer W. Slow sodium channel inactivation in rat fast-twitch muscle. J Physiol. 1987 Feb;383:327–337. doi: 10.1113/jphysiol.1987.sp016411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., Sigworth F. J. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989 Jul;3(1):33–49. doi: 10.1016/0896-6273(89)90113-x. [DOI] [PubMed] [Google Scholar]
  21. Valenzuela C., Bennett P. B., Jr Gating of cardiac Na+ channels in excised membrane patches after modification by alpha-chymotrypsin. Biophys J. 1994 Jul;67(1):161–171. doi: 10.1016/S0006-3495(94)80465-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang D. W., George A. L., Jr, Bennett P. B. Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels. Biophys J. 1996 Jan;70(1):238–245. doi: 10.1016/S0006-3495(96)79566-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yang J. S., Bennett P. B., Makita N., George A. L., Barchi R. L. Expression of the sodium channel beta 1 subunit in rat skeletal muscle is selectively associated with the tetrodotoxin-sensitive alpha subunit isoform. Neuron. 1993 Nov;11(5):915–922. doi: 10.1016/0896-6273(93)90121-7. [DOI] [PubMed] [Google Scholar]
  25. Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES