Abstract
Growth of femora and tibiae has been measured in mice carrying three distinct chondrodystrophic mutants (achondroplasia cn, brachymorphic bm and stumpy stm) aged 6--128 days, and in normal litter-mates. cn and bm resemble each other in growing slowly until the time of weaning, when growth is interrupted, stm grows strongly at first, but stops at around 14 days. The significance of these findings is discussed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROOKES M. CORTICAL VASCULARIZATION AND GROWTH IN FOETAL TUBULAR BONES. J Anat. 1963 Oct;97:597–609. [PMC free article] [PubMed] [Google Scholar]
- Bargman G. J., Mackler B., Shepard T. H. Studies of oxidative energy deficiency. I. Achondroplasia in the rabbit. Arch Biochem Biophys. 1972 May;150(1):137–146. doi: 10.1016/0003-9861(72)90020-3. [DOI] [PubMed] [Google Scholar]
- FELTS W. J. The prenatal development of the human femur. Am J Anat. 1954 Jan;94(1):1–44. doi: 10.1002/aja.1000940102. [DOI] [PubMed] [Google Scholar]
- Fraser R. A., Goetinck P. F. Reduced synthesis of chondroitin sulfate by cartilage from the mutant, nanomelia. Biochem Biophys Res Commun. 1971 May 7;43(3):494–503. doi: 10.1016/0006-291x(71)90641-3. [DOI] [PubMed] [Google Scholar]
- HEIKEL H. V. On ossification and growth of certain bones of the rabbit; with a comparison of the skeletal age in the rabbit and in man. Acta Orthop Scand. 1960;29:171–184. doi: 10.3109/17453675908988796. [DOI] [PubMed] [Google Scholar]
- Johnson D. R., Hunt D. M. Biochemical observations on the cartilage of achondroplastic (can) mice. J Embryol Exp Morphol. 1974 Apr;31(2):319–328. [PubMed] [Google Scholar]
- Konyukhov B. V., Paschin Y. V. Abnormal growth of the body, internal organs and skeleton in the achondroplastic mice. Acta Biol Acad Sci Hung. 1970;21(4):347–354. [PubMed] [Google Scholar]
- Lane P. W., Dickie M. M. Three recessive mutations producing disproportionate dwarfing in mice: achondroplasia, brachymorphic, and stubby. J Hered. 1968 Sep-Oct;59(5):300–308. doi: 10.1093/oxfordjournals.jhered.a107725. [DOI] [PubMed] [Google Scholar]
- McCormick M. J., Lowe P. J., Ashworth M. A. Analysis of the relative contributions of the proximal and distal epiphyseal plates to the growth in length of the tibia in the New Zealand white rabbit. Growth. 1972 Jun;36(2):133–144. [PubMed] [Google Scholar]
- Orkin R. W., Pratt R. M., Martin G. R. Undersulfated chondroitin sulfate in the cartilage matrix of brachymorphic mice. Dev Biol. 1976 May;50(1):82–94. doi: 10.1016/0012-1606(76)90069-5. [DOI] [PubMed] [Google Scholar]
- Payton C. G. The Growth in Length of the Long Bones in the Madder-fed Pig. J Anat. 1932 Apr;66(Pt 3):414–425. [PMC free article] [PubMed] [Google Scholar]
- Payton C. G. The Position of the Nutrient Foramen and Direction of the Nutrient Canal in the Long Bones of the Madder-Fed Pig. J Anat. 1934 Jul;68(Pt 4):500–510. [PMC free article] [PubMed] [Google Scholar]
- Pennypacker J. P., Goetinck P. F. Biochemical and ultrastructural studies of collagen and proteochondroitin sulfate in normal and nanomelic cartilage. Dev Biol. 1976 May;50(1):35–47. doi: 10.1016/0012-1606(76)90065-8. [DOI] [PubMed] [Google Scholar]
- Rimoin D. L. The chondrodystrophies. Adv Hum Genet. 1975;5:1–118. doi: 10.1007/978-1-4615-9068-2_1. [DOI] [PubMed] [Google Scholar]
- Seegmiller R., Ferguson C. C., Sheldon H. Studies on cartilage. VI. A genetically determined defect in tracheal cartilage. J Ultrastruct Res. 1972 Feb;38(3):288–301. doi: 10.1016/s0022-5320(72)90006-8. [DOI] [PubMed] [Google Scholar]
- Silberberg R., Hasler M., Lesker P. Ultrastructure of articular cartilage of achondroplastic mice. Acta Anat (Basel) 1976;96(2):162–175. doi: 10.1159/000144670. [DOI] [PubMed] [Google Scholar]
- Silberberg R., Lesker P. Skeletal growth and development of achondroplastic mice. Growth. 1975 Mar;39(1):17–33. [PubMed] [Google Scholar]