Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Aug;69(2):372–379. doi: 10.1016/S0006-3495(95)79909-X

Barrier-free paths of directed protein motion in the erythrocyte plasma membrane.

D H Boal 1, S K Boey 1
PMCID: PMC1236261  PMID: 8527650

Abstract

A model is presented for the steric interaction between a plasma membrane protein and the membrane cytoskeleton in the human erythrocyte. The cytoskeleton is treated as a network of polymer chains attached to a flat bilayer, and the membrane protein is a hemisphere of effective radius R(e) with center on the bilayer edge. The simulation is used to investigate the barrier-free path L for linear guided motion of a protein in the bilayer plane. It is shown that the barrier-free paths of small proteins can be used to extract the effective in-plane diameter of cytoskeletal components. For example, the in-plane diameter of an ankyrin attachment site is found to be approximately 12 nm in the simulation, or twice the computational spectrin diameter. The barrier-free paths of large proteins (R(e) > 23 nm) vanish when the proteins are corralled by the cytoskeleton. For intermediate size proteins, L decreases approximately as L is directly proportional to S-1.4 where S is proportional to the sum of the protein and cytoskeleton chain radii.

Full text

PDF
372

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D. Lateral motion of membrane proteins and biological function. J Membr Biol. 1983;75(1):1–10. doi: 10.1007/BF01870794. [DOI] [PubMed] [Google Scholar]
  2. Boal D. H. Computer simulation of a model network for the erythrocyte cytoskeleton. Biophys J. 1994 Aug;67(2):521–529. doi: 10.1016/S0006-3495(94)80511-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burt R. W., Bishop D. T., Cannon-Albright L., Samowitz W. S., Lee R. L., DiSario J. A., Skolnick M. H. Hereditary aspects of colorectal adenomas. Cancer. 1992 Sep 1;70(5 Suppl):1296–1299. doi: 10.1002/1097-0142(19920901)70:3+<1296::aid-cncr2820701516>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  4. Edidin M., Kuo S. C., Sheetz M. P. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science. 1991 Nov 29;254(5036):1379–1382. doi: 10.1126/science.1835798. [DOI] [PubMed] [Google Scholar]
  5. Ghosh R. N., Webb W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J. 1994 May;66(5):1301–1318. doi: 10.1016/S0006-3495(94)80939-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grest GS, Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A Gen Phys. 1986 May;33(5):3628–3631. doi: 10.1103/physreva.33.3628. [DOI] [PubMed] [Google Scholar]
  7. Gross D., Webb W. W. Molecular counting of low-density lipoprotein particles as individuals and small clusters on cell surfaces. Biophys J. 1986 Apr;49(4):901–911. doi: 10.1016/S0006-3495(86)83718-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobson K., Elson E., Koppel D., Webb W. Fluorescence photobleaching in cell biology. Nature. 1982 Jan 28;295(5847):283–284. doi: 10.1038/295283a0. [DOI] [PubMed] [Google Scholar]
  9. Jacobson K., Ishihara A., Inman R. Lateral diffusion of proteins in membranes. Annu Rev Physiol. 1987;49:163–175. doi: 10.1146/annurev.ph.49.030187.001115. [DOI] [PubMed] [Google Scholar]
  10. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee G. M., Ishihara A., Jacobson K. A. Direct observation of brownian motion of lipids in a membrane. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6274–6278. doi: 10.1073/pnas.88.14.6274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
  13. Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sako Y., Kusumi A. Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol. 1994 Jun;125(6):1251–1264. doi: 10.1083/jcb.125.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saxton M. J. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J. 1994 Feb;66(2 Pt 1):394–401. doi: 10.1016/s0006-3495(94)80789-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saxton M. J. Lateral diffusion in an archipelago. Effects of impermeable patches on diffusion in a cell membrane. Biophys J. 1982 Aug;39(2):165–173. doi: 10.1016/S0006-3495(82)84504-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saxton M. J. Single-particle tracking: models of directed transport. Biophys J. 1994 Nov;67(5):2110–2119. doi: 10.1016/S0006-3495(94)80694-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sheetz M. P., Schindler M., Koppel D. E. Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature. 1980 Jun 12;285(5765):510–511. doi: 10.1038/285510a0. [DOI] [PubMed] [Google Scholar]
  19. Webb W. W., Barak L. S., Tank D. W., Wu E. S. Molecular mobility on the cell surface. Biochem Soc Symp. 1981;(46):191–205. [PubMed] [Google Scholar]
  20. Zhang F., Lee G. M., Jacobson K. Protein lateral mobility as a reflection of membrane microstructure. Bioessays. 1993 Sep;15(9):579–588. doi: 10.1002/bies.950150903. [DOI] [PubMed] [Google Scholar]
  21. de Brabander M., Nuydens R., Ishihara A., Holifield B., Jacobson K., Geerts H. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy. J Cell Biol. 1991 Jan;112(1):111–124. doi: 10.1083/jcb.112.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES