Abstract
Learning disabilities, attention deficit hyperactivity disorder, developmental delays, and emotional and behavioral problems are among childhood disabilities of increasing concern. Interacting genetic, environmental, and social factors are important determinants of childhood brain development and function. For many reasons, however, studying neurodevelopmental vulnerabilities in children is challenging. Moreover, inadequate incidence and trend data interfere with full understanding of the magnitude of the problem. Despite these difficulties, extensive laboratory and clinical studies of several neurodevelopmental toxicants, including lead, mercury, polychlorinated biphenyls, alcohol, and nicotine, demonstrate the unique vulnerability of the developing brain to environmental agents at exposure levels that have no lasting effect in adults. Historically, understanding the effects of these toxicants on the developing brain has emerged slowly while generations of children are exposed to unsafe levels. Unfortunately, with few exceptions, neurodevelopmental toxicity data are missing for most industrial chemicals in widespread use, even when populationwide exposures are documented. The personal, family, and communitywide costs of developmental disabilities are profound. In addition to the need for more research, a preventive public health response requires mitigation of exposures to potential neurodevelopmental toxicants when available evidence establishes the plausibility of harm, despite residual toxicologic uncertainties.
Full Text
The Full Text of this article is available as a PDF (501.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlbom J., Fredriksson A., Eriksson P. Exposure to an organophosphate (DFP) during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behaviour in adult mice. Brain Res. 1995 Apr 17;677(1):13–19. doi: 10.1016/0006-8993(95)00024-k. [DOI] [PubMed] [Google Scholar]
- Amin-Zaki L., Elhassani S., Majeed M. A., Clarkson T. W., Doherty R. A., Greenwood M. R., Giovanoli-Jakubczak T. Perinatal methylmercury poisoning in Iraq. Am J Dis Child. 1976 Oct;130(10):1070–1076. doi: 10.1001/archpedi.1976.02120110032004. [DOI] [PubMed] [Google Scholar]
- Atchison W. D., Hare M. F. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 1994 Jun;8(9):622–629. doi: 10.1096/fasebj.8.9.7516300. [DOI] [PubMed] [Google Scholar]
- Boyle C. A., Decouflé P., Yeargin-Allsopp M. Prevalence and health impact of developmental disabilities in US children. Pediatrics. 1994 Mar;93(3):399–403. [PubMed] [Google Scholar]
- Brouwer A., Longnecker M. P., Birnbaum L. S., Cogliano J., Kostyniak P., Moore J., Schantz S., Winneke G. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect. 1999 Aug;107 (Suppl 4):639–649. doi: 10.1289/ehp.99107s4639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collipp P. J., Chen S. Y., Maitinsky S. Manganese in infant formulas and learning disability. Ann Nutr Metab. 1983;27(6):488–494. doi: 10.1159/000176724. [DOI] [PubMed] [Google Scholar]
- Costa L. G., Li W. F., Richter R. J., Shih D. M., Lusis A., Furlong C. E. The role of paraoxonase (PON1) in the detoxication of organophosphates and its human polymorphism. Chem Biol Interact. 1999 May 14;119-120:429–438. doi: 10.1016/s0009-2797(99)00055-1. [DOI] [PubMed] [Google Scholar]
- Crump K. S., Kjellström T., Shipp A. M., Silvers A., Stewart A. Influence of prenatal mercury exposure upon scholastic and psychological test performance: benchmark analysis of a New Zealand cohort. Risk Anal. 1998 Dec;18(6):701–713. doi: 10.1023/b:rian.0000005917.52151.e6. [DOI] [PubMed] [Google Scholar]
- Darnerud P. O., Eriksen G. S., Jóhannesson T., Larsen P. B., Viluksela M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ Health Perspect. 2001 Mar;109 (Suppl 1):49–68. doi: 10.1289/ehp.01109s149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson P. W., Myers G. J., Cox C., Axtell C., Shamlaye C., Sloane-Reeves J., Cernichiari E., Needham L., Choi A., Wang Y. Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. JAMA. 1998 Aug 26;280(8):701–707. doi: 10.1001/jama.280.8.701. [DOI] [PubMed] [Google Scholar]
- Dörner K., Dziadzka S., Höhn A., Sievers E., Oldigs H. D., Schulz-Lell G., Schaub J. Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow's milk formulas. Br J Nutr. 1989 May;61(3):559–572. doi: 10.1079/bjn19890143. [DOI] [PubMed] [Google Scholar]
- Dörner K., Dziadzka S., Höhn A., Sievers E., Oldigs H. D., Schulz-Lell G., Schaub J. Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow's milk formulas. Br J Nutr. 1989 May;61(3):559–572. doi: 10.1079/bjn19890143. [DOI] [PubMed] [Google Scholar]
- Eriksson P., Fredriksson A. Neurotoxic effects of two different pyrethroids, bioallethrin and deltamethrin, on immature and adult mice: changes in behavioral and muscarinic receptor variables. Toxicol Appl Pharmacol. 1991 Mar 15;108(1):78–85. doi: 10.1016/0041-008x(91)90270-o. [DOI] [PubMed] [Google Scholar]
- Eskenazi B., Castorina R. Association of prenatal maternal or postnatal child environmental tobacco smoke exposure and neurodevelopmental and behavioral problems in children. Environ Health Perspect. 1999 Dec;107(12):991–1000. doi: 10.1289/ehp.99107991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman L. S., Genel M., Bezman R. J., Slanetz P. J. Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Council on Scientific Affairs, American Medical Association. JAMA. 1998 Apr 8;279(14):1100–1107. doi: 10.1001/jama.279.14.1100. [DOI] [PubMed] [Google Scholar]
- Grandjean P., Weihe P., White R. F., Debes F., Araki S., Yokoyama K., Murata K., Sørensen N., Dahl R., Jørgensen P. J. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997 Nov-Dec;19(6):417–428. doi: 10.1016/s0892-0362(97)00097-4. [DOI] [PubMed] [Google Scholar]
- Guillette E. A., Meza M. M., Aquilar M. G., Soto A. D., Garcia I. E. An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico. Environ Health Perspect. 1998 Jun;106(6):347–353. doi: 10.1289/ehp.98106347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddow J. E., Palomaki G. E., Allan W. C., Williams J. R., Knight G. J., Gagnon J., O'Heir C. E., Mitchell M. L., Hermos R. J., Waisbren S. E. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999 Aug 19;341(8):549–555. doi: 10.1056/NEJM199908193410801. [DOI] [PubMed] [Google Scholar]
- Harada M. Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology. 1978 Oct;18(2):285–288. doi: 10.1002/tera.1420180216. [DOI] [PubMed] [Google Scholar]
- Jacobson J. L., Jacobson S. W., Humphrey H. E. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr. 1990 Jan;116(1):38–45. doi: 10.1016/s0022-3476(05)81642-7. [DOI] [PubMed] [Google Scholar]
- Jacobson J. L., Jacobson S. W. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med. 1996 Sep 12;335(11):783–789. doi: 10.1056/NEJM199609123351104. [DOI] [PubMed] [Google Scholar]
- Koopman-Esseboom C., Morse D. C., Weisglas-Kuperus N., Lutkeschipholt I. J., Van der Paauw C. G., Tuinstra L. G., Brouwer A., Sauer P. J. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res. 1994 Oct;36(4):468–473. doi: 10.1203/00006450-199410000-00009. [DOI] [PubMed] [Google Scholar]
- Lönnerdal B. Nutritional aspects of soy formula. Acta Paediatr Suppl. 1994 Sep;402:105–108. doi: 10.1111/j.1651-2227.1994.tb13371.x. [DOI] [PubMed] [Google Scholar]
- Meerts I. A., van Zanden J. J., Luijks E. A., van Leeuwen-Bol I., Marsh G., Jakobsson E., Bergman A., Brouwer A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000 Jul;56(1):95–104. doi: 10.1093/toxsci/56.1.95. [DOI] [PubMed] [Google Scholar]
- Mena I. The role of manganese in human disease. Ann Clin Lab Sci. 1974 Nov-Dec;4(6):487–491. [PubMed] [Google Scholar]
- Needham L. L., Hill R. H., Jr, Ashley D. L., Pirkle J. L., Sampson E. J. The priority toxicant reference range study: interim report. Environ Health Perspect. 1995 Apr;103 (Suppl 3):89–94. doi: 10.1289/ehp.95103s389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman H. L., Riess J. A., Tobin M. J., Biesecker G. E., Greenhouse J. B. Bone lead levels and delinquent behavior. JAMA. 1996 Feb 7;275(5):363–369. [PubMed] [Google Scholar]
- Osius N., Karmaus W., Kruse H., Witten J. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children. Environ Health Perspect. 1999 Oct;107(10):843–849. doi: 10.1289/ehp.99107843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patandin S., Lanting C. I., Mulder P. G., Boersma E. R., Sauer P. J., Weisglas-Kuperus N. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr. 1999 Jan;134(1):33–41. doi: 10.1016/s0022-3476(99)70369-0. [DOI] [PubMed] [Google Scholar]
- Pihl R. O., Parkes M. Hair element content in learning disabled children. Science. 1977 Oct 14;198(4313):204–206. doi: 10.1126/science.905825. [DOI] [PubMed] [Google Scholar]
- Plomin R., Owen M. J., McGuffin P. The genetic basis of complex human behaviors. Science. 1994 Jun 17;264(5166):1733–1739. doi: 10.1126/science.8209254. [DOI] [PubMed] [Google Scholar]
- Rice D. C. Behavioral impairment produced by low-level postnatal PCB exposure in monkeys. Environ Res. 1999 Feb;80(2 Pt 2):S113–S121. doi: 10.1006/enrs.1998.3917. [DOI] [PubMed] [Google Scholar]
- Rice D. C., Evangelista de Duffard A. M., Duffard R., Iregren A., Satoh H., Watanabe C. Lessons for neurotoxicology from selected model compounds: SGOMSEC joint report. Environ Health Perspect. 1996 Apr;104 (Suppl 2):205–215. doi: 10.1289/ehp.96104s2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice D. C., Hayward S. Effects of postnatal exposure to a PCB mixture in monkeys on nonspatial discrimination reversal and delayed alternation performance. Neurotoxicology. 1997;18(2):479–494. [PubMed] [Google Scholar]
- Rosenman K. D., Guss P. S. Prevalence of congenital deficiency in serum cholinesterase. Arch Environ Health. 1997 Jan-Feb;52(1):42–44. doi: 10.1080/00039899709603798. [DOI] [PubMed] [Google Scholar]
- Safer D. J., Zito J. M., Fine E. M. Increased methylphenidate usage for attention deficit disorder in the 1990s. Pediatrics. 1996 Dec;98(6 Pt 1):1084–1088. [PubMed] [Google Scholar]
- Sager P. R., Matheson D. W. Mechanisms of neurotoxicity related to selective disruption of microtubules and intermediate filaments. Toxicology. 1988 May;49(2-3):479–492. doi: 10.1016/0300-483x(88)90034-0. [DOI] [PubMed] [Google Scholar]
- Sager P. R. Selectivity of methyl mercury effects on cytoskeleton and mitotic progression in cultured cells. Toxicol Appl Pharmacol. 1988 Jul;94(3):473–486. doi: 10.1016/0041-008x(88)90288-8. [DOI] [PubMed] [Google Scholar]
- Stewart P., Reihman J., Lonky E., Darvill T., Pagano J. Prenatal PCB exposure and neonatal behavioral assessment scale (NBAS) performance. Neurotoxicol Teratol. 2000 Jan-Feb;22(1):21–29. doi: 10.1016/s0892-0362(99)00056-2. [DOI] [PubMed] [Google Scholar]
- Tilson H. A., Kodavanti P. R. Neurochemical effects of polychlorinated biphenyls: an overview and identification of research needs. Neurotoxicology. 1997;18(3):727–743. [PubMed] [Google Scholar]
- Trifiletti R. R., Packard A. M. Immune mechanisms in pediatric neuropsychiatric disorders. Tourette's syndrome, OCD, and PANDAS. Child Adolesc Psychiatr Clin N Am. 1999 Oct;8(4):767–775. [PubMed] [Google Scholar]
- Zoeller R. T., Dowling A. L., Vas A. A. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology. 2000 Jan;141(1):181–189. doi: 10.1210/endo.141.1.7273. [DOI] [PubMed] [Google Scholar]