Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Dec;110(12):1199–1205. doi: 10.1289/ehp.021101199

Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis.

Doug Crump 1, Kate Werry 1, Nik Veldhoen 1, Graham Van Aggelen 1, Caren C Helbing 1
PMCID: PMC1241106  PMID: 12460798

Abstract

A growing number of substances released into the environment disrupt normal endocrine mechanisms in a wide range of vertebrates. Little is known about the effects and identities of endocrine-disrupting chemicals (EDCs) that target thyroid hormone (TH) action, particularly at the cellular level. Frog tadpole metamorphosis depends completely on TH, which has led to the suggestion of a metamorphosis-based assay for screening potential EDCs. A major mechanism of TH action is the alteration of gene expression via hormone-bound nuclear receptors. To assess the gene expression profiles in the frog model, we designed a novel multispecies frog cDNA microarray. Recently, the preemergent herbicide acetochlor was shown to accelerate 3,5,3 -triiodothyronine (T3)-induced forelimb emergence and increase mRNA expression of thyroid hormone ss receptors in ranid tadpoles. Here we show that T3-induced metamorphosis of Xenopus laevis, a species commonly used in the laboratory, is accelerated upon acute exposure to an environmentally relevant level of acetochlor. The morphologic changes observed are preceded by alterations in gene expression profiles detected in the tadpole tail, and the nature of these profiles suggest a novel mechanism of action for acetochlor.

Full Text

The Full Text of this article is available as a PDF (706.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Laemmli U. K. Identification of nuclear pre-replication centers poised for DNA synthesis in Xenopus egg extracts: immunolocalization study of replication protein A. J Cell Biol. 1992 Oct;119(1):1–15. doi: 10.1083/jcb.119.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amano T. Isolation of genes involved in intestinal remodeling during anuran metamorphosis. Wound Repair Regen. 1998 Jul-Aug;6(4):302–313. doi: 10.1046/j.1524-475x.1998.60406.x. [DOI] [PubMed] [Google Scholar]
  3. Ashby J., Kier L., Wilson A. G., Green T., Lefevre P. A., Tinwell H., Willis G. A., Heydens W. F., Clapp M. J. Evaluation of the potential carcinogenicity and genetic toxicity to humans of the herbicide acetochlor. Hum Exp Toxicol. 1996 Sep;15(9):702–735. doi: 10.1177/096032719601500902. [DOI] [PubMed] [Google Scholar]
  4. Bartosiewicz M., Penn S., Buckpitt A. Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Environ Health Perspect. 2001 Jan;109(1):71–74. doi: 10.1289/ehp.0110971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Becker K. B., Schneider M. J., Davey J. C., Galton V. A. The type III 5-deiodinase in Rana catesbeiana tadpoles is encoded by a thyroid hormone-responsive gene. Endocrinology. 1995 Oct;136(10):4424–4431. doi: 10.1210/endo.136.10.7664662. [DOI] [PubMed] [Google Scholar]
  6. Becker K. B., Stephens K. C., Davey J. C., Schneider M. J., Galton V. A. The type 2 and type 3 iodothyronine deiodinases play important roles in coordinating development in Rana catesbeiana tadpoles. Endocrinology. 1997 Jul;138(7):2989–2997. doi: 10.1210/endo.138.7.5272. [DOI] [PubMed] [Google Scholar]
  7. Brown D. D., Wang Z., Furlow J. D., Kanamori A., Schwartzman R. A., Remo B. F., Pinder A. The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1924–1929. doi: 10.1073/pnas.93.5.1924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buckbinder L., Brown D. D. Thyroid hormone-induced gene expression changes in the developing frog limb. J Biol Chem. 1992 Dec 25;267(36):25786–25791. [PubMed] [Google Scholar]
  9. Cantley L. C., Neel B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4240–4245. doi: 10.1073/pnas.96.8.4240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cheek A. O., Ide C. F., Bollinger J. E., Rider C. V., McLachlan J. A. Alteration of leopard frog (Rana pipiens) metamorphosis by the herbicide acetochlor. Arch Environ Contam Toxicol. 1999 Jul;37(1):70–77. doi: 10.1007/s002449900491. [DOI] [PubMed] [Google Scholar]
  11. Cheek A. O., Kow K., Chen J., McLachlan J. A. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Perspect. 1999 Apr;107(4):273–278. doi: 10.1289/ehp.99107273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Custodia N., Won S. J., Novillo A., Wieland M., Li C., Callard I. P. Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann N Y Acad Sci. 2001 Dec;948:32–42. doi: 10.1111/j.1749-6632.2001.tb03984.x. [DOI] [PubMed] [Google Scholar]
  13. DeVito M., Biegel L., Brouwer A., Brown S., Brucker-Davis F., Cheek A. O., Christensen R., Colborn T., Cooke P., Crissman J. Screening methods for thyroid hormone disruptors. Environ Health Perspect. 1999 May;107(5):407–415. doi: 10.1289/ehp.99107407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Denver R. J., Pavgi S., Shi Y. B. Thyroid hormone-dependent gene expression program for Xenopus neural development. J Biol Chem. 1997 Mar 28;272(13):8179–8188. doi: 10.1074/jbc.272.13.8179. [DOI] [PubMed] [Google Scholar]
  15. Eisen M. B., Spellman P. T., Brown P. O., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863–14868. doi: 10.1073/pnas.95.25.14863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eliceiri B. P., Brown D. D. Quantitation of endogenous thyroid hormone receptors alpha and beta during embryogenesis and metamorphosis in Xenopus laevis. J Biol Chem. 1994 Sep 30;269(39):24459–24465. [PubMed] [Google Scholar]
  17. Furlow J. D., Berry D. L., Wang Z., Brown D. D. A set of novel tadpole specific genes expressed only in the epidermis are down-regulated by thyroid hormone during Xenopus laevis metamorphosis. Dev Biol. 1997 Feb 15;182(2):284–298. doi: 10.1006/dbio.1996.8478. [DOI] [PubMed] [Google Scholar]
  18. Helbing C. C., Atkinson B. G. 3,5,3'-Triiodothyronine-induced carbamyl-phosphate synthetase gene expression is stabilized in the liver of Rana catesbeiana tadpoles during heat shock. J Biol Chem. 1994 Apr 22;269(16):11743–11750. [PubMed] [Google Scholar]
  19. Helbing C., Gallimore C., Atkinson B. G. Characterization of a Rana catesbeiana hsp30 gene and its expression in the liver of this amphibian during both spontaneous and thyroid hormone-induced metamorphosis. Dev Genet. 1996;18(3):223–233. doi: 10.1002/(SICI)1520-6408(1996)18:3<223::AID-DVG3>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  20. Helbing C., Gergely G., Atkinson B. G. Sequential up-regulation of thyroid hormone beta receptor, ornithine transcarbamylase, and carbamyl phosphate synthetase mRNAs in the liver of Rana catesbeiana tadpoles during spontaneous and thyroid hormone-induced metamorphosis. Dev Genet. 1992;13(4):289–301. doi: 10.1002/dvg.1020130406. [DOI] [PubMed] [Google Scholar]
  21. Huang H., Cai L., Remo B. F., Brown D. D. Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7348–7353. doi: 10.1073/pnas.131198998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang H., Marsh-Armstrong N., Brown D. D. Metamorphosis is inhibited in transgenic Xenopus laevis tadpoles that overexpress type III deiodinase. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):962–967. doi: 10.1073/pnas.96.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hutchinson T. H., Brown R., Brugger K. E., Campbell P. M., Holt M., Länge R., McCahon P., Tattersfield L. J., van Egmond R. Ecological risk assessment of endocrine disruptors. Environ Health Perspect. 2000 Nov;108(11):1007–1014. doi: 10.1289/ehp.001081007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kawahara A., Baker B. S., Tata J. R. Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development. 1991 Aug;112(4):933–943. doi: 10.1242/dev.112.4.933. [DOI] [PubMed] [Google Scholar]
  25. Lobenhofer E. K., Bushel P. R., Afshari C. A., Hamadeh H. K. Progress in the application of DNA microarrays. Environ Health Perspect. 2001 Sep;109(9):881–891. doi: 10.1289/ehp.01109881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marsh-Armstrong N., Huang H., Remo B. F., Liu T. T., Brown D. D. Asymmetric growth and development of the Xenopus laevis retina during metamorphosis is controlled by type III deiodinase. Neuron. 1999 Dec;24(4):871–878. doi: 10.1016/s0896-6273(00)81034-x. [DOI] [PubMed] [Google Scholar]
  27. Miyatani S., Winkles J. A., Sargent T. D., Dawid I. B. Stage-specific keratins in Xenopus laevis embryos and tadpoles: the XK81 gene family. J Cell Biol. 1986 Nov;103(5):1957–1965. doi: 10.1083/jcb.103.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakashima T., Sekiguchi T., Kuraoka A., Fukushima K., Shibata Y., Komiyama S., Nishimoto T. Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol. 1993 Oct;13(10):6367–6374. doi: 10.1128/mcb.13.10.6367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nuwaysir E. F., Bittner M., Trent J., Barrett J. C., Afshari C. A. Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog. 1999 Mar;24(3):153–159. doi: 10.1002/(sici)1098-2744(199903)24:3<153::aid-mc1>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  30. Rollerová E., Gáspárová Z., Wsólová L., Urbancíková M. Interaction of acetochlor with estrogen receptor in the rat uterus. Acetochlor--possible endocrine modulator? Gen Physiol Biophys. 2000 Mar;19(1):73–84. [PubMed] [Google Scholar]
  31. Sachs L. M., Damjanovski S., Jones P. L., Li Q., Amano T., Ueda S., Shi Y. B., Ishizuya-Oka A. Dual functions of thyroid hormone receptors during Xenopus development. Comp Biochem Physiol B Biochem Mol Biol. 2000 Jun;126(2):199–211. doi: 10.1016/s0305-0491(00)00198-x. [DOI] [PubMed] [Google Scholar]
  32. Scribner E. A., Battaglin W. A., Goolsby D. A., Thurman E. M. Changes in herbicide concentrations in Midwestern streams in relation to changes in use, 1989-1998. Sci Total Environ. 2000 Apr 5;248(2-3):255–263. doi: 10.1016/s0048-9697(99)00547-1. [DOI] [PubMed] [Google Scholar]
  33. Shi Y. B., Ishizuya-Oka A. Thyroid hormone regulation of apoptotic tissue remodeling: implications from molecular analysis of amphibian metamorphosis. Prog Nucleic Acid Res Mol Biol. 2001;65:53–100. doi: 10.1016/s0079-6603(00)65002-x. [DOI] [PubMed] [Google Scholar]
  34. Shi Y. B., Liang V. C. Cloning and characterization of the ribosomal protein L8 gene from Xenopus laevis. Biochim Biophys Acta. 1994 Mar 1;1217(2):227–228. doi: 10.1016/0167-4781(94)90042-6. [DOI] [PubMed] [Google Scholar]
  35. Smith H. O. Recovery of DNA from gels. Methods Enzymol. 1980;65(1):371–380. doi: 10.1016/s0076-6879(80)65048-4. [DOI] [PubMed] [Google Scholar]
  36. Tata J. R., Baker B. S., Machuca I., Rabelo E. M., Yamauchi K. Autoinduction of nuclear receptor genes and its significance. J Steroid Biochem Mol Biol. 1993 Aug;46(2):105–119. doi: 10.1016/0960-0760(93)90286-6. [DOI] [PubMed] [Google Scholar]
  37. Thress K., Henzel W., Shillinglaw W., Kornbluth S. Scythe: a novel reaper-binding apoptotic regulator. EMBO J. 1998 Nov 2;17(21):6135–6143. doi: 10.1093/emboj/17.21.6135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tonissen K. F., Krieg P. A. Analysis of a variant Max sequence expressed in Xenopus laevis. Oncogene. 1994 Jan;9(1):33–38. [PubMed] [Google Scholar]
  39. Vasudevan N., Koibuchi N., Chin W. W., Pfaff D. W. Differential crosstalk between estrogen receptor (ER)alpha and ERbeta and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Brain Res Mol Brain Res. 2001 Nov 1;95(1-2):9–17. doi: 10.1016/s0169-328x(01)00165-6. [DOI] [PubMed] [Google Scholar]
  40. Veldhoen N., Helbing C. C. Detection of environmental endocrine-disruptor effects on gene expression in live Rana catesbeiana tadpoles using a tail fin biopsy technique. Environ Toxicol Chem. 2001 Dec;20(12):2704–2708. [PubMed] [Google Scholar]
  41. Vriz S., Taylor M., Méchali M. Differential expression of two Xenopus c-myc proto-oncogenes during development. EMBO J. 1989 Dec 20;8(13):4091–4097. doi: 10.1002/j.1460-2075.1989.tb08593.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wade P. A., Gegonne A., Jones P. L., Ballestar E., Aubry F., Wolffe A. P. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999 Sep;23(1):62–66. doi: 10.1038/12664. [DOI] [PubMed] [Google Scholar]
  43. Wang Z., Brown D. D. Thyroid hormone-induced gene expression program for amphibian tail resorption. J Biol Chem. 1993 Aug 5;268(22):16270–16278. [PubMed] [Google Scholar]
  44. Wilson A. G., Thake D. C., Heydens W. E., Brewster D. W., Hotz K. J. Mode of action of thyroid tumor formation in the male Long-Evans rat administered high doses of alachlor. Fundam Appl Toxicol. 1996 Sep;33(1):16–23. doi: 10.1006/faat.1996.0138. [DOI] [PubMed] [Google Scholar]
  45. Yaoita Y., Shi Y. B., Brown D. D. Xenopus laevis alpha and beta thyroid hormone receptors. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7090–7094. doi: 10.1073/pnas.87.18.7090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yost C., Farr G. H., 3rd, Pierce S. B., Ferkey D. M., Chen M. M., Kimelman D. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell. 1998 Jun 12;93(6):1031–1041. doi: 10.1016/s0092-8674(00)81208-8. [DOI] [PubMed] [Google Scholar]
  47. Zhu Y. S., Yen P. M., Chin W. W., Pfaff D. W. Estrogen and thyroid hormone interaction on regulation of gene expression. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12587–12592. doi: 10.1073/pnas.93.22.12587. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES