Abstract
Ni(II) compounds are well known as human carcinogens, though the molecular events which are responsible for this are not yet fully understood. It has been proposed that the binding of N(II) ions within the cell nucleus is a crucial element in the mechanism of carcinogenesis. The most abundant proteins in the cell nucleus are histones, and this makes them the prime candidates for this role. This article is a review of our recent studies of histone H4 models of Ni(II) binding. We analyzed the sequence of the N-terminal tail of the histone H4, Ac-SGRGKGGKGLGKGGAKRH(18)RKVL-Am, for Ni(II) binding. This site has been proposed mainly because of the potent inhibitory effect of Ni(II) on the acetylation of lysine residues near the histidine H(18), and also because of the accessibility of the H4 tail in the histone octamer. Combined potentiometric and spectroscopic studies showed that the histidine 18 acted as an anchoring binding site for metal ions in the peptide investigated. Comparison with the results for Cu(II) binding are also reported. The results allowed us to propose that the binding of Ni(II) is able to promote a secondary structure with organized side-chain orientation on the N-terminal tail of histone H4.
Full Text
The Full Text of this article is available as a PDF (230.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan J., Harborne N., Rau D. C., Gould H. Participation of core histone "tails" in the stabilization of the chromatin solenoid. J Cell Biol. 1982 May;93(2):285–297. doi: 10.1083/jcb.93.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bal W., Liang R., Lukszo J., Lee S. H., Dizdaroglu M., Kasprzak K. S. Ni(II) specifically cleaves the C-terminal tail of the major variant of histone H2A and forms an oxidative damage-mediating complex with the cleaved-off octapeptide. Chem Res Toxicol. 2000 Jul;13(7):616–624. doi: 10.1021/tx000044l. [DOI] [PubMed] [Google Scholar]
- Bennett B. G. Environmental nickel pathways to man. IARC Sci Publ. 1984;(53):487–495. [PubMed] [Google Scholar]
- Broday L., Peng W., Kuo M. H., Salnikow K., Zoroddu M., Costa M. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 2000 Jan 15;60(2):238–241. [PubMed] [Google Scholar]
- Bryce G. F., Roeske R. W., Gurd F. R. Cupric ion complexes of histidine-containing peptides. J Biol Chem. 1965 Oct;240(10):3837–3846. [PubMed] [Google Scholar]
- Burks C., Cassidy M., Cinkosky M. J., Cumella K. E., Gilna P., Hayden J. E., Keen G. M., Kelley T. A., Kelly M., Kristofferson D. GenBank. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2221–2225. doi: 10.1093/nar/19.suppl.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coogan T. P., Latta D. M., Snow E. T., Costa M. Toxicity and carcinogenicity of nickel compounds. Crit Rev Toxicol. 1989;19(4):341–384. doi: 10.3109/10408448909029327. [DOI] [PubMed] [Google Scholar]
- Costa M. Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol. 1991;31:321–337. doi: 10.1146/annurev.pa.31.040191.001541. [DOI] [PubMed] [Google Scholar]
- Costa M., Mollenhauer H. H. Carcinogenic activity of particulate nickel compounds is proportional to their cellular uptake. Science. 1980 Jul 25;209(4455):515–517. doi: 10.1126/science.7394519. [DOI] [PubMed] [Google Scholar]
- Cotelle N., Trémolières E., Bernier J. L., Catteau J. P., Hénichart J. P. Redox chemistry of complexes of nickel(II) with some biologically important peptides in the presence of reduced oxygen species: an ESR study. J Inorg Biochem. 1992 Apr;46(1):7–15. doi: 10.1016/0162-0134(92)80058-4. [DOI] [PubMed] [Google Scholar]
- Dally H., Hartwig A. Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis. 1997 May;18(5):1021–1026. doi: 10.1093/carcin/18.5.1021. [DOI] [PubMed] [Google Scholar]
- Doll R., Morgan L. G., Speizer F. E. Cancers of the lung and nasal sinuses in nickel workers. Br J Cancer. 1970 Dec;24(4):623–632. doi: 10.1038/bjc.1970.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997 Sep 25;389(6649):349–352. doi: 10.1038/38664. [DOI] [PubMed] [Google Scholar]
- Hansen J. C., Tse C., Wolffe A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry. 1998 Dec 22;37(51):17637–17641. doi: 10.1021/bi982409v. [DOI] [PubMed] [Google Scholar]
- Hartmann M., Hartwig A. Disturbance of DNA damage recognition after UV-irradiation by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis. 1998 Apr;19(4):617–621. doi: 10.1093/carcin/19.4.617. [DOI] [PubMed] [Google Scholar]
- Kasprzak K. S. Possible role of oxidative damage in metal-induced carcinogenesis. Cancer Invest. 1995;13(4):411–430. doi: 10.3109/07357909509031921. [DOI] [PubMed] [Google Scholar]
- Langård S. Nickel-related cancer in welders. Sci Total Environ. 1994 Jun 6;148(2-3):303–309. doi: 10.1016/0048-9697(94)90408-1. [DOI] [PubMed] [Google Scholar]
- Lee J. E., Ciccarelli R. B., Jennette K. W. Solubilization of the carcinogen nickel subsulfide and its interaction with deoxyribonucleic acid and protein. Biochemistry. 1982 Feb 16;21(4):771–778. doi: 10.1021/bi00533a030. [DOI] [PubMed] [Google Scholar]
- Lee Y. W., Klein C. B., Kargacin B., Salnikow K., Kitahara J., Dowjat K., Zhitkovich A., Christie N. T., Costa M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol. 1995 May;15(5):2547–2557. doi: 10.1128/mcb.15.5.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
- Morales V., Richard-Foy H. Role of histone N-terminal tails and their acetylation in nucleosome dynamics. Mol Cell Biol. 2000 Oct;20(19):7230–7237. doi: 10.1128/mcb.20.19.7230-7237.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nackerdien Z., Kasprzak K. S., Rao G., Halliwell B., Dizdaroglu M. Nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Cancer Res. 1991 Nov 1;51(21):5837–5842. [PubMed] [Google Scholar]
- Regan L. The design of metal-binding sites in proteins. Annu Rev Biophys Biomol Struct. 1993;22:257–287. doi: 10.1146/annurev.bb.22.060193.001353. [DOI] [PubMed] [Google Scholar]
- Salnikow K., Cosentino S., Klein C., Costa M. Loss of thrombospondin transcriptional activity in nickel-transformed cells. Mol Cell Biol. 1994 Jan;14(1):851–858. doi: 10.1128/mcb.14.1.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen H. M., Zhang Q. F. Risk assessment of nickel carcinogenicity and occupational lung cancer. Environ Health Perspect. 1994 Jan;102 (Suppl 1):275–282. doi: 10.1289/ehp.94102s1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strahl B. D., Allis C. D. The language of covalent histone modifications. Nature. 2000 Jan 6;403(6765):41–45. doi: 10.1038/47412. [DOI] [PubMed] [Google Scholar]
- Yamashita M. M., Wesson L., Eisenman G., Eisenberg D. Where metal ions bind in proteins. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5648–5652. doi: 10.1073/pnas.87.15.5648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang W., Bone J. R., Edmondson D. G., Turner B. M., Roth S. Y. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 1998 Jun 1;17(11):3155–3167. doi: 10.1093/emboj/17.11.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zoroddu M. A., Kowalik-Jankowska T., Kozlowski H., Molinari H., Salnikow K., Broday L., Costa M. Interaction of Ni(II) and Cu(II) with a metal binding sequence of histone H4: AKRHRK, a model of the H4 tail. Biochim Biophys Acta. 2000 Jul 3;1475(2):163–168. doi: 10.1016/s0304-4165(00)00066-0. [DOI] [PubMed] [Google Scholar]
- Zoroddu M. A., Kowalik-Jankowska T., Kozlowski H., Salnikow K., Costa M. Ni(II) and Cu(II) binding with a 14-aminoacid sequence of Cap43 protein, TRSRSHTSEGTRSR. J Inorg Biochem. 2001 Mar;84(1-2):47–54. doi: 10.1016/s0162-0134(00)00204-x. [DOI] [PubMed] [Google Scholar]
