Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):745–748. doi: 10.1289/ehp.02110s5745

Arsenate reductases in prokaryotes and eukaryotes.

Rita Mukhopadhyay 1, Barry P Rosen 1
PMCID: PMC1241237  PMID: 12426124

Abstract

The ubiquity of arsenic in the environment has led to the evolution of enzymes for arsenic detoxification. An initial step in arsenic metabolism is the enzymatic reduction of arsenate [As(V)] to arsenite [As(III)]. At least three families of arsenate reductase enzymes have arisen, apparently by convergent evolution. The properties of two of these are described here. The first is the prokaryotic ArsC arsenate reductase of Escherichia coli. The second, Acr2p of Saccharomyces cerevisiae, is the only identified eukaryotic arsenate reductase. Although unrelated to each other, both enzymes receive their reducing equivalents from glutaredoxin and reduced glutathione. The structure of the bacterial ArsC has been solved at 1.65 A. As predicted from its biochemical properties, ArsC structures with covalent enzyme-arsenic intermediates that include either As(V) or As(III) were observed. The yeast Acr2p has an active site motif HC(X)(5)R that is conserved in protein phosphotyrosine phosphatases and rhodanases, suggesting that these three groups of enzymes may have evolved from an ancestral oxyanion-binding protein.

Full Text

The Full Text of this article is available as a PDF (175.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslund F., Ehn B., Miranda-Vizuete A., Pueyo C., Holmgren A. Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813–9817. doi: 10.1073/pnas.91.21.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M. S., Guan Z., Laurberg M., Su X. D. Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc Natl Acad Sci U S A. 2001 Nov 6;98(24):13577–13582. doi: 10.1073/pnas.241397198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bobrowicz P., Wysocki R., Owsianik G., Goffeau A., Ułaszewski S. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast. 1997 Jul;13(9):819–828. doi: 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  4. Bushweller J. H., Aslund F., Wüthrich K., Holmgren A. Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14----S) and its mixed disulfide with glutathione. Biochemistry. 1992 Sep 29;31(38):9288–9293. doi: 10.1021/bi00153a023. [DOI] [PubMed] [Google Scholar]
  5. Denu J. M., Dixon J. E. A catalytic mechanism for the dual-specific phosphatases. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5910–5914. doi: 10.1073/pnas.92.13.5910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fauman E. B., Cogswell J. P., Lovejoy B., Rocque W. J., Holmes W., Montana V. G., Piwnica-Worms H., Rink M. J., Saper M. A. Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell. 1998 May 15;93(4):617–625. doi: 10.1016/s0092-8674(00)81190-3. [DOI] [PubMed] [Google Scholar]
  7. Gladysheva T. B., Oden K. L., Rosen B. P. Properties of the arsenate reductase of plasmid R773. Biochemistry. 1994 Jun 14;33(23):7288–7293. doi: 10.1021/bi00189a033. [DOI] [PubMed] [Google Scholar]
  8. Hofmann K., Bucher P., Kajava A. V. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. J Mol Biol. 1998 Sep 11;282(1):195–208. doi: 10.1006/jmbi.1998.1998. [DOI] [PubMed] [Google Scholar]
  9. Ji G., Garber E. A., Armes L. G., Chen C. M., Fuchs J. A., Silver S. Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry. 1994 Jun 14;33(23):7294–7299. doi: 10.1021/bi00189a034. [DOI] [PubMed] [Google Scholar]
  10. Liu J., Gladysheva T. B., Lee L., Rosen B. P. Identification of an essential cysteinyl residue in the ArsC arsenate reductase of plasmid R773. Biochemistry. 1995 Oct 17;34(41):13472–13476. doi: 10.1021/bi00041a026. [DOI] [PubMed] [Google Scholar]
  11. Martin P., DeMel S., Shi J., Gladysheva T., Gatti D. L., Rosen B. P., Edwards B. F. Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure. 2001 Nov;9(11):1071–1081. doi: 10.1016/s0969-2126(01)00672-4. [DOI] [PubMed] [Google Scholar]
  12. Mukhopadhyay R., Rosen B. P. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol Lett. 1998 Nov 1;168(1):127–136. doi: 10.1111/j.1574-6968.1998.tb13265.x. [DOI] [PubMed] [Google Scholar]
  13. Mukhopadhyay R., Rosen B. P. The phosphatase C(X)5R motif is required for catalytic activity of the Saccharomyces cerevisiae Acr2p arsenate reductase. J Biol Chem. 2001 Jul 18;276(37):34738–34742. doi: 10.1074/jbc.M103354200. [DOI] [PubMed] [Google Scholar]
  14. Mukhopadhyay R., Shi J., Rosen B. P. Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem. 2000 Jul 14;275(28):21149–21157. doi: 10.1074/jbc.M910401199. [DOI] [PubMed] [Google Scholar]
  15. Radabaugh T. R., Aposhian H. V. Enzymatic reduction of arsenic compounds in mammalian systems: reduction of arsenate to arsenite by human liver arsenate reductase. Chem Res Toxicol. 2000 Jan;13(1):26–30. doi: 10.1021/tx990115k. [DOI] [PubMed] [Google Scholar]
  16. Rosen B. P. Families of arsenic transporters. Trends Microbiol. 1999 May;7(5):207–212. doi: 10.1016/s0966-842x(99)01494-8. [DOI] [PubMed] [Google Scholar]
  17. Shi J., Vlamis-Gardikas A., Aslund F., Holmgren A., Rosen B. P. Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem. 1999 Dec 17;274(51):36039–36042. doi: 10.1074/jbc.274.51.36039. [DOI] [PubMed] [Google Scholar]
  18. Smith A. H., Hopenhayn-Rich C., Bates M. N., Goeden H. M., Hertz-Picciotto I., Duggan H. M., Wood R., Kosnett M. J., Smith M. T. Cancer risks from arsenic in drinking water. Environ Health Perspect. 1992 Jul;97:259–267. doi: 10.1289/ehp.9297259. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES