Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):831–834. doi: 10.1289/ehp.02110s5831

The role of hypoxia-inducible signaling pathway in nickel carcinogenesis.

Konstantin Salnikow 1, Todd Davidson 1, Max Costa 1
PMCID: PMC1241255  PMID: 12426141

Abstract

Using human and rodent cells in vitro, we characterized a hypoxia-inducible signaling pathway as one of the pathways affected by carcinogenic nickel compounds. Acute exposure to nickel activates hypoxia-inducible transcription factor-1 (HIF-1), which strongly induces hypoxia-inducible genes, including the recently discovered tumor marker Cap43. This gene has been cloned based on its nickel inducibility and was found to be highly inducible by hypoxia. To identify other HIF-1-dependent/independent nickel-inducible genes, we used cells obtained from HIF-1 alpha null mouse embryos and analyzed gene expression changes using the microarray technique. We found that genes coding for glycolytic enzymes, known to be regulated by HIF-1, were also induced in nickel-exposed cells. In addition, we identified a number of new genes highly induced by nickel in an HIF-dependent manner. Elevated HIF-1 activity after acute nickel exposure might be selectively advantageous because nickel-transformed rodent and human cells possess increased HIF-1 transcriptional activity. Hypoxia plays an important role in tumor progression. It selects for cells with enhanced glycolytic activity, causing production of large amounts of lactic acid, one of the most common features of tumor cells (Warburg effect). Here, we hypothesize that exposure to nickel activates the hypoxia-inducible pathway and facilitates selection of cells with increased transcriptional activity of hypoxia-inducible genes, which may be important in the nickel-induced carcinogenic process.

Full Text

The Full Text of this article is available as a PDF (170.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggart N. W., Costa M. Assessment of the uptake and mutagenicity of nickel chloride in salmonella tester strains. Mutat Res. 1986 Dec;175(4):209–215. doi: 10.1016/0165-7992(86)90056-4. [DOI] [PubMed] [Google Scholar]
  2. Biswas P., Wu C. Y. Control of toxic metal emissions from combustors using sorbents: a review. J Air Waste Manag Assoc. 1998 Feb;48(2):113–127. doi: 10.1080/10473289.1998.10463657. [DOI] [PubMed] [Google Scholar]
  3. Bruick R. K. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9082–9087. doi: 10.1073/pnas.97.16.9082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldberg M. A., Dunning S. P., Bunn H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988 Dec 9;242(4884):1412–1415. doi: 10.1126/science.2849206. [DOI] [PubMed] [Google Scholar]
  5. Graeber T. G., Peterson J. F., Tsai M., Monica K., Fornace A. J., Jr, Giaccia A. J. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol. 1994 Sep;14(9):6264–6277. doi: 10.1128/mcb.14.9.6264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartwig A., Mullenders L. H., Schlepegrell R., Kasten U., Beyersmann D. Nickel(II) interferes with the incision step in nucleotide excision repair in mammalian cells. Cancer Res. 1994 Aug 1;54(15):4045–4051. [PubMed] [Google Scholar]
  7. Huang C., Li J., Costa M., Zhang Z., Leonard S. S., Castranova V., Vallyathan V., Ju G., Shi X. Hydrogen peroxide mediates activation of nuclear factor of activated T cells (NFAT) by nickel subsulfide. Cancer Res. 2001 Nov 15;61(22):8051–8057. [PubMed] [Google Scholar]
  8. Huang X., Klein C. B., Costa M. Crystalline Ni3S2 specifically enhances the formation of oxidants in the nuclei of CHO cells as detected by dichlorofluorescein. Carcinogenesis. 1994 Mar;15(3):545–548. doi: 10.1093/carcin/15.3.545. [DOI] [PubMed] [Google Scholar]
  9. Jaakkola P., Mole D. R., Tian Y. M., Wilson M. I., Gielbert J., Gaskell S. J., von Kriegsheim A., Hebestreit H. F., Mukherji M., Schofield C. J. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001 Apr 5;292(5516):468–472. doi: 10.1126/science.1059796. [DOI] [PubMed] [Google Scholar]
  10. Kasprzak K. S. The role of oxidative damage in metal carcinogenicity. Chem Res Toxicol. 1991 Nov-Dec;4(6):604–615. doi: 10.1021/tx00024a002. [DOI] [PubMed] [Google Scholar]
  11. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  12. Klein C. B., Frenkel K., Costa M. The role of oxidative processes in metal carcinogenesis. Chem Res Toxicol. 1991 Nov-Dec;4(6):592–604. doi: 10.1021/tx00024a001. [DOI] [PubMed] [Google Scholar]
  13. Lee Y. W., Klein C. B., Kargacin B., Salnikow K., Kitahara J., Dowjat K., Zhitkovich A., Christie N. T., Costa M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol. 1995 May;15(5):2547–2557. doi: 10.1128/mcb.15.5.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Li W., Zhao Y., Chou I. N. Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology. 1993 Jan 29;77(1-2):65–79. doi: 10.1016/0300-483x(93)90138-i. [DOI] [PubMed] [Google Scholar]
  15. Mayer C., Klein R. G., Wesch H., Schmezer P. Nickel subsulfide is genotoxic in vitro but shows no mutagenic potential in respiratory tract tissues of BigBlue rats and Muta Mouse mice in vivo after inhalation. Mutat Res. 1998 Dec 3;420(1-3):85–98. doi: 10.1016/s1383-5718(98)00140-5. [DOI] [PubMed] [Google Scholar]
  16. Morimoto R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998 Dec 15;12(24):3788–3796. doi: 10.1101/gad.12.24.3788. [DOI] [PubMed] [Google Scholar]
  17. Salnikow K., An W. G., Melillo G., Blagosklonny M. V., Costa M. Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis. 1999 Sep;20(9):1819–1823. doi: 10.1093/carcin/20.9.1819. [DOI] [PubMed] [Google Scholar]
  18. Salnikow K., Blagosklonny M. V., Ryan H., Johnson R., Costa M. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res. 2000 Jan 1;60(1):38–41. [PubMed] [Google Scholar]
  19. Salnikow K., Gao M., Voitkun V., Huang X., Costa M. Altered oxidative stress responses in nickel-resistant mammalian cells. Cancer Res. 1994 Dec 15;54(24):6407–6412. [PubMed] [Google Scholar]
  20. Salnikow K., Wang S., Costa M. Induction of activating transcription factor 1 by nickel and its role as a negative regulator of thrombospondin I gene expression. Cancer Res. 1997 Nov 15;57(22):5060–5066. [PubMed] [Google Scholar]
  21. Semenza G. L. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol. 2000;35(2):71–103. doi: 10.1080/10409230091169186. [DOI] [PubMed] [Google Scholar]
  22. Semenza G. L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–578. doi: 10.1146/annurev.cellbio.15.1.551. [DOI] [PubMed] [Google Scholar]
  23. Shan X., Aw T. Y., Smith E. R., Ingelman-Sundberg M., Mannervik B., Iyanagi T., Jones D. P. Effect of chronic hypoxia on detoxication enzymes in rat liver. Biochem Pharmacol. 1992 Jun 9;43(11):2421–2426. doi: 10.1016/0006-2952(92)90322-a. [DOI] [PubMed] [Google Scholar]
  24. Shen Y., White E. p53-dependent apoptosis pathways. Adv Cancer Res. 2001;82:55–84. doi: 10.1016/s0065-230x(01)82002-9. [DOI] [PubMed] [Google Scholar]
  25. WARBURG O. On the origin of cancer cells. Science. 1956 Feb 24;123(3191):309–314. doi: 10.1126/science.123.3191.309. [DOI] [PubMed] [Google Scholar]
  26. Zhou D., Salnikow K., Costa M. Cap43, a novel gene specifically induced by Ni2+ compounds. Cancer Res. 1998 May 15;58(10):2182–2189. [PubMed] [Google Scholar]
  27. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. doi: 10.1016/0092-8674(93)90500-p. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES