Abstract
Substituted ureas and carbamates are mechanistic inhibitors of the soluble epoxide hydrolase (sEH). We screened a set of chemicals containing these functionalities in larval fathead minnow (Pimphales promelas) and embryo/larval golden medaka (Oryzias latipes) models to evaluate the utility of these systems for investigating sEH inhibition in vivo. Both fathead minnow and medaka sEHs were functionally similar to the tested mammalian orthologs (murine and human) with respect to substrate hydrolysis and inhibitor susceptibility. Low lethality was observed in either larval or embryonic fish exposed to diuron [N-(3,4-dichlorophenyl), N'-dimethyl urea], desmethyl diuron [N-(3,4-dichlorophenyl), N'-methyl urea], or siduron [N-(1-methylcyclohexyl), N'-phenyl urea]. Dose-dependent inhibition of sEH was a sublethal effect of substituted urea exposure with the potency of siduron < desmethyl diuron = diuron, differing from the observed in vitro sEH inhibition potency of siduron > desmethyl diuron > diuron. Further, siduron exposure synergized the toxicity of trans-stilbene oxide in fathead minnows. Medaka embryos exposed to diuron, desmethyl diuron, or siduron displayed dose-dependent delays in hatch, and elevated concentrations of diuron and desmethyl diuron produced developmental toxicity. The dose-dependent toxicity and in vivo sEH inhibition correlated, suggesting a potential, albeit undefined, relationship between these factors. Additionally, the observed inversion of in vitro to in vivo potency suggests that these fish models may provide tools for investigating the in vivo stability of in vitro inhibitors while screening for untoward effects.
Full Text
The Full Text of this article is available as a PDF (99.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey G. S., Williams D. E., Hendricks J. D. Fish models for environmental carcinogenesis: the rainbow trout. Environ Health Perspect. 1996 Mar;104 (Suppl 1):5–21. doi: 10.1289/ehp.96104s15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beetham J. K., Tian T., Hammock B. D. cDNA cloning and expression of a soluble epoxide hydrolase from human liver. Arch Biochem Biophys. 1993 Aug 15;305(1):197–201. doi: 10.1006/abbi.1993.1411. [DOI] [PubMed] [Google Scholar]
- Borhan B., Mebrahtu T., Nazarian S., Kurth M. J., Hammock B. D. Improved radiolabeled substrates for soluble epoxide hydrolase. Anal Biochem. 1995 Oct 10;231(1):188–200. doi: 10.1006/abio.1995.1520. [DOI] [PubMed] [Google Scholar]
- Chacos N., Capdevila J., Falck J. R., Manna S., Martin-Wixtrom C., Gill S. S., Hammock B. D., Estabrook R. W. The reaction of arachidonic acid epoxides (epoxyeicosatrienoic acids) with a cytosolic epoxide hydrolase. Arch Biochem Biophys. 1983 Jun;223(2):639–648. doi: 10.1016/0003-9861(83)90628-8. [DOI] [PubMed] [Google Scholar]
- Dietze E. C., Kuwano E., Hammock B. D. Spectrophotometric substrates for cytosolic epoxide hydrolase. Anal Biochem. 1994 Jan;216(1):176–187. doi: 10.1006/abio.1994.1023. [DOI] [PubMed] [Google Scholar]
- Gill S. S., Ota K., Hammock B. D. Radiometric assays for mammalian epoxide hydrolases and glutathione S-transferase. Anal Biochem. 1983 May;131(1):273–282. doi: 10.1016/0003-2697(83)90166-5. [DOI] [PubMed] [Google Scholar]
- Gill S. S., Ota K., Hammock B. D. Radiometric assays for mammalian epoxide hydrolases and glutathione S-transferase. Anal Biochem. 1983 May;131(1):273–282. doi: 10.1016/0003-2697(83)90166-5. [DOI] [PubMed] [Google Scholar]
- Gogal R. M., Jr, Ahmed S. A., Smith S. A., Holladay S. D. Mandates to develop non-mammalian models for chemical immunotoxicity evaluation: are fish a viable alternate to rodents? Toxicol Lett. 1999 Jun 1;106(2-3):89–92. doi: 10.1016/s0378-4274(99)00018-1. [DOI] [PubMed] [Google Scholar]
- Grant D. F., Storms D. H., Hammock B. D. Molecular cloning and expression of murine liver soluble epoxide hydrolase. J Biol Chem. 1993 Aug 15;268(23):17628–17633. [PubMed] [Google Scholar]
- Kelly K. A., Havrilla C. M., Brady T. C., Abramo K. H., Levin E. D. Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect. 1998 Jul;106(7):375–384. doi: 10.1289/ehp.98106375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurén D. J., Halarnkar P. P., Hammcock B. D., Hinton D. E. Microsomal and cytosolic epoxide hydrolase and glutathione S-transferase activities in the gill, liver, and kidney of the rainbow trout, Salmo gairdneri. Baseline levels and optimization of assay conditions. Biochem Pharmacol. 1989 Mar 15;38(6):881–887. doi: 10.1016/0006-2952(89)90275-x. [DOI] [PubMed] [Google Scholar]
- Moghaddam M. F., Grant D. F., Cheek J. M., Greene J. F., Williamson K. C., Hammock B. D. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med. 1997 May;3(5):562–566. doi: 10.1038/nm0597-562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moghaddam M., Motoba K., Borhan B., Pinot F., Hammock B. D. Novel metabolic pathways for linoleic and arachidonic acid metabolism. Biochim Biophys Acta. 1996 Aug 13;1290(3):327–339. doi: 10.1016/0304-4165(96)00037-2. [DOI] [PubMed] [Google Scholar]
- Morisseau C., Goodrow M. H., Dowdy D., Zheng J., Greene J. F., Sanborn J. R., Hammock B. D. Potent urea and carbamate inhibitors of soluble epoxide hydrolases. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8849–8854. doi: 10.1073/pnas.96.16.8849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Node K., Huo Y., Ruan X., Yang B., Spiecker M., Ley K., Zeldin D. C., Liao J. K. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999 Aug 20;285(5431):1276–1279. doi: 10.1126/science.285.5431.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oltman C. L., Weintraub N. L., VanRollins M., Dellsperger K. C. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ Res. 1998 Nov 2;83(9):932–939. doi: 10.1161/01.res.83.9.932. [DOI] [PubMed] [Google Scholar]
- Schlezinger J. J., Parker C., Zeldin D. C., Stegeman J. J. Arachidonic acid metabolism in the marine fish Stenotomus chrysops (Scup) and the effects of cytochrome P450 1A inducers. Arch Biochem Biophys. 1998 May 15;353(2):265–275. doi: 10.1006/abbi.1998.0651. [DOI] [PubMed] [Google Scholar]
- Schuytema G. S., Nebeker A. V. Comparative toxicity of diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles. Arch Environ Contam Toxicol. 1998 May;34(4):370–376. doi: 10.1007/s002449900332. [DOI] [PubMed] [Google Scholar]
- Van Boven M., Laruelle L., Daenens P. HPLC analysis of diuron and metabolites in blood and urine. J Anal Toxicol. 1990 Jul-Aug;14(4):231–234. doi: 10.1093/jat/14.4.231. [DOI] [PubMed] [Google Scholar]
- Villalobos S. A., Anderson M. J., Denison M. S., Hinton D. E., Tullis K., Kennedy I. M., Jones A. D., Chang D. P., Yang G., Kelly P. Dioxinlike properties of a trichloroethylene combustion-generated aerosol. Environ Health Perspect. 1996 Jul;104(7):734–743. doi: 10.1289/ehp.96104734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villalobos SA, Hamm JT, Teh SJ, Hinton DE. Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes): stage-specific toxicity and the protective role of chorion. Aquat Toxicol. 2000 Mar 1;48(2-3):309–326. doi: 10.1016/s0166-445x(99)00032-6. [DOI] [PubMed] [Google Scholar]
- Weintraub N. L., Fang X., Kaduce T. L., VanRollins M., Chatterjee P., Spector A. A. Potentiation of endothelium-dependent relaxation by epoxyeicosatrienoic acids. Circ Res. 1997 Aug;81(2):258–267. doi: 10.1161/01.res.81.2.258. [DOI] [PubMed] [Google Scholar]
- Wixtrom R. N., Silva M. H., Hammock B. D. Affinity purification of cytosolic epoxide hydrolase using derivatized epoxy-activated Sepharose gels. Anal Biochem. 1988 Feb 15;169(1):71–80. doi: 10.1016/0003-2697(88)90256-4. [DOI] [PubMed] [Google Scholar]
