Skip to main content
Cancers logoLink to Cancers
. 2025 Sep 6;17(17):2922. doi: 10.3390/cancers17172922

Epithelial–Mesenchymal Transition in Osteosarcoma as a Key Driver of Pulmonary Metastasis

Fangcheng Luo 1, Kosei Ando 1,*, Yoshinori Takemura 1, Tae-Hwi Park 1, Takafumi Yayama 1, Shinji Imai 1
Editors: Ron Batash1, Alberto Crimì1, Moshe Schaffer1, Pietro Ruggieri1
PMCID: PMC12428473  PMID: 40941019

Simple Summary

Osteosarcoma is a highly aggressive bone tumor that often spreads to the lungs, leading to poor prognosis. This review mainly introduces a biological process called epithelial–mesenchymal transition (EMT), which promotes lung metastasis in osteosarcoma. We describe the related molecules, signaling pathways, and the regulatory role of non-coding RNAs, as well as how the tumor microenvironment affects this process. We also discuss potential therapeutic strategies targeting EMT. A deeper understanding of this process may help suppress metastasis and improve survival in patients with osteosarcoma. Overall, this review shows that EMT plays an important role in lung metastasis of osteosarcoma, and targeting this process may help improve treatment and patient survival.

Keywords: osteosarcoma, EMT, metastasis

Abstract

Background: Osteosarcoma is an aggressive bone tumor with a high risk of lung metastasis, which severely affects patient survival. EMT plays a major role in tumor spread, therapy resistance, and cancer stemness. This review explores how EMT contributes to osteosarcoma metastasis and the underlying molecular mechanisms. Methods: We reviewed recent studies on EMT-related signaling pathways, transcription factors, and regulatory RNAs in osteosarcoma. We also examined the role of the tumor microenvironment. Results: EMT promotes cell detachment, migration, and lung colonization. Key pathways such as TGF-β, MAPK, PI3K/Akt, STAT3, Notch, and Wnt/β-catenin are involved. Non-coding RNAs further regulate EMT by interacting with these pathways. The tumor microenvironment, including hypoxia and immune cells, also supports EMT and metastasis. Conclusions: EMT is a key driver of metastasis and poor outcomes in osteosarcoma. Targeting EMT and its regulators may help prevent lung spread and improve treatment. Future strategies combining EMT inhibition with existing therapies could be promising for clinical application.

1. Introduction

Osteosarcoma (OS) is a highly aggressive bone malignancy with a bimodal age distribution, peaking in adolescence and after 65 years [1]. It is the most common primary bone tumor in children, with an incidence of 5.6 cases per million in those under the age of 15 years. OS typically develops in the metaphysis of long bones, most frequently in the distal femur, proximal tibia, and proximal humerus [1]. Despite therapeutic advances, the prognosis remains poor for patients with metastatic OS. Thus, new therapies are under investigation. Although the survival rate for localized OS exceeds 60%, the prognosis for metastatic cases remains poor; the survival rates in these cases is below 30%. The lung is the most frequent site of metastasis and consequently determines patient outcomes [2]. Epithelial–mesenchymal transition (EMT) is a key biological process involved in cancer development, tissue repair, and cancer progression. It is regulated by transcription factors, cytokines, and growth factors that drive tumor cell plasticity, invasion, and therapy resistance. EMT also contributes to the formation of cancer stem cells (CSCs) and circulating tumor cells (CTCs) that play critical roles in metastasis and drug resistance [3].

The primary treatment for OS is surgical resection, often combined with neoadjuvant and adjuvant chemotherapy for high-grade tumors [4]. Although advancements in surgery and chemotherapy initially improved clinical outcomes, overall survival rates have remained unchanged for decades [5]. The rise of personalized medicine has led to an increasing interest in the development of targeted therapies. In particular, the key pathways, proteins, or molecules for cancer progression have been identified. One critical feature linked to aggressive cancers is EMT. Therefore, in this study, we aim to explore the molecular mechanisms underlying EMT-driven metastasis in osteosarcoma and identify potential therapeutic targets for intervention.

2. EMT and Its Role in Cancer Progression

EMT is a process during which epithelial cells acquire the mesenchymal stem cell phenotype, which facilitates migration, invasion, and metastasis [6] (Figure 1). This process reduces cell–cell adhesion through decreased E-cadherin expression while enhancing cell migration and invasiveness. This allows tumor cells to detach from the primary tumor and enter circulation [7]. CTCs, tumor cells that have entered the bloodstream, often exhibit EMT-like characteristics that enhance their survival in the hostile circulatory environment (Figure 2). EMT enables CTCs to resist apoptosis, evade immune surveillance, activate coagulation pathways, and interact with host cells to promote metastasis [8]. Mesenchymal–epithelial transition (MET) is the reverse process of EMT, in which cells regain epithelial characteristics, including cell polarity, adhesion, and E-cadherin expression (Figure 1). EMT confers increased drug resistance and immune evasion, whereas MET facilitates colonization in distant organs; these processes collectively drive cancer metastasis [9].

Figure 1.

Figure 1

The EMT and MET spectrum. EMT is a dynamic and reversible process in which epithelial cells lose their polarity and cell–cell adhesion, thereby acquiring mesenchymal traits that enhance migration and invasion. This transition occurs along a continuum, with cells often existing in an intermediate partial/hybrid EMT state where they retain both epithelial and mesenchymal characteristics. The reverse process, mesenchymal–epithelial transition (MET), allows mesenchymal-like cells to regain epithelial properties, consequently facilitating tumor colonization at secondary sites. Created with BioRender.com (accessed on 5 September 2025, publication license). Available from: https://BioRender.com/rh1rpfk.

Figure 2.

Figure 2

Epithelial–mesenchymal plasticity in metastasis. EMT enables cells from the primary tumor to undergo intravasation and enter the bloodstream as CTCs. These CTCs may exist in epithelial, mesenchymal, or partial/hybrid EMT states. These cells can survive, evade immune detection, and migrate to distant organs while in circulation. MET facilitates extravasation and colonization upon arrival, consequently allowing metastatic tumor formation. Created with BioRender.com (accessed on 5 September 2025, publication license). Available from: https://BioRender.com/6p4p80t.

Partial or hybrid EMT cells represent an intermediate state between epithelial and mesenchymal phenotypes. This allows tumor cells to retain epithelial features while acquiring migratory and invasive abilities [10]. Unlike the traditional view of EMT as a simple switch between epithelial and mesenchymal states, recent studies show that most carcinoma cells undergo incomplete EMT, consequently retaining both epithelial and mesenchymal traits. Epithelial-like cells are sensitive to drugs, grow more rapidly, and respond well to apoptosis signals, whereas mesenchymal-like cells exhibit better drug resistance, invasion, and immune evasion. However, partial or hybrid EMT cells have the highest stemness, tumor-initiation ability, and adaptability, making them key players in metastasis [11]. In addition, both extreme epithelial and fully mesenchymal states may lead to a loss of tumor-initiating and colonization abilities [12].

EMT plays a crucial role in cancer progression, particularly in tumor invasion, metastasis, and therapy resistance. Brabletz et al. [13] proposed the migrating CSCs concept and MET hypothesis in 2005: although EMT and CSCs represent different aspects of cancer, they are interconnected processes driving tumor progression and metastatic evolution. In 2008, Mani et al. [14] identified EMT as a key regulator of CSC properties that enhances tumor cell plasticity and survival. Contrastingly, miR-200 family members inhibit EMT; this highlights the role of microRNAs (miRNAs) in EMT regulation [15,16]. In addition, Yu et al. [17] reported that CTCs exhibit dynamic shifts between the epithelial and mesenchymal phenotypes in 2013, suggesting that EMT is not a fixed state but a reversible and plastic process. Furthermore, Zheng et al. [18] demonstrated that EMT is not always required for metastasis but substantially contributes to drug resistance, consequently confirming that EMT is a multifaceted mechanism in cancer progression. These findings underscore the critical role of EMT in tumor dissemination, survival, and therapeutic response, making it a crucial target for future cancer therapies.

3. EMT-Related Signaling Pathways in Cancer

Most EMT-related pathways converge on common transcription factors (e.g., SNAIL, SLUG, ZEB1, and TWIST) and lead to epithelial marker loss and mesenchymal features; below we summarize pathway-specific mechanisms and therapeutic implications in a concise manner (Figure 3).

Figure 3.

Figure 3

Key signaling pathways involved in epithelial–mesenchymal transition. This diagram illustrates multiple signaling pathways that regulate the expression of EMT transcription factors (SNAIL, SLUG, ZEB1, and TWIST), including RTK, TGF-β, Notch, IL-6/JAK/STAT3, PI3K/AKT, and WNT/β-catenin signaling. These pathways contribute to EMT, a critical process for cancer progression and metastasis. Created with BioRender.com (accessed on 5 September 2025, publication license). Available from: https://BioRender.com/5ieelui.

3.1. TGF-β Signaling Pathway

Transforming growth factor-beta (TGF-β) ligands bind type II receptor (TGFBR2) and recruit/activate the type I receptor (TGFBR1) to initiate downstream cascades [19]. TGFBR1 subsequently phosphorylates receptor-regulated Smads (R-Smads), specifically Smad2 and Smad3. This enables them to form a complex with Smad4 (co-Smad) and translocate into the nucleus, where they regulate the transcription of EMT-related genes [9,19,20,21,22]. There, these complexes bind promoters (e.g., Snail, ZEB1, and Slug) and recruit co-activators such as CBP/p300 to induce EMT programs, together with cytoskeletal/adhesion and polarity changes that favor invasion [20,23]. Functionally, TGF-β suppresses proliferation in early disease but promotes EMT and metastasis in advanced cancers; Smad3 is particularly dominant and controls Snail, ZEB1, Slug, Twist, and FOXC2, which are linked to stemness, drug resistance, and immune evasion [24].

Crosstalk with pathways such as PI3K/Akt, MAPK, and Wnt/β-catenin further enhances the EMT process, underscoring the therapeutic potential of targeting TGF-β signaling [25,26,27].

3.2. MAPK Signaling Pathway

Growth factors and cytokines trigger RTKs and activate the RAS-RAF-MEK-ERK cascade, in which nuclear ERK influences EMT through transcription factors [28]. One important regulator is RREB1, as MAPK-driven RREB1 helps TGF-β-activated Smad2/3/4 bind to EMT gene promoters, such as SNAIL and fibrogenic genes, thereby strengthening EMT and altering chromatin in a context-dependent way [29,30,31]. Blocking ERK activity prevents RREB1 from recruiting Smads, lowers EMT gene expression, and reduces cell motility, showing that RREB1 provides a functional link between MAPK and TGF-β signaling [29].

3.3. Notch Signaling Pathway

When Notch ligands such as Jagged or Delta-like bind to the receptor, the intracellular domain (ICN) is released and moves into the nucleus, where it binds CSL/RBP-Jκ and activates EMT-related transcription [32]. ICN also works together with SMAD proteins, and blocking Notch signaling prevents TGF-β from inducing EMT, which points to Notch as a potential therapeutic target against tumor progression, stemness, and resistance [33].

3.4. STAT3 Signaling Pathway

Cytokines activate JAK kinases, which phosphorylate STAT3 and allow its dimerization and nuclear entry to regulate EMT genes [34]. STAT3 drives EMT by inducing Snail, Slug, ZEB1, and Twist, leading to epithelial loss, mesenchymal traits, and increased invasion [35]. It also stabilizes Snail through the LIV-1/GSK3β axis and is maintained by an IL-6/JAK/STAT3 autocrine loop linked to therapy resistance [29,36]. In addition, STAT3 cooperates with TGF-β/SMAD3/4 and activates NF-κB signals that sustain EMT [37].

3.5. PI3/Akt Signaling Pathway

The phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway promotes EMT and malignant behavior by increasing EMT transcription factors and mesenchymal programs [38]. After RTK activation, PI3K converts PIP2 to PIP3, which recruits and activates Akt at Thr308 with the help of PDK1; PTEN reverses this by dephosphorylating PIP3 and limits EMT [39,40]. Akt regulates proliferation, survival, and motility, enhances Twist1 phosphorylation and anti-apoptosis, while its inhibition induces MET, showing Akt as a central EMT regulator [9,41].

3.6. Wnt/β-Catenin Signaling Pathway

The Wnt/β-catenin signaling pathway plays a crucial role in EMT, embryogenesis, and cancer progression. In the absence of Wnt ligands, β-catenin is degraded by the AXIN/APC/CK1/GSK-3β complex; ligand binding to FZD/LRP5/6 allows β-catenin to accumulate and enter the nucleus [42,43]. Nuclear β-catenin with TCF/LEF activates EMT drivers such as Snail, Slug, ZEB1, and Twist, while repressing epithelial identity [44]. High β-catenin levels associate with poor prognosis and resistance, and its crosstalk with PI3K/Akt, TGF-β, and Notch further strengthens EMT [9,45]. Inhibitors of β-catenin (ICG-001, PRI-724) and porcupine (WNT974) have shown promise in blocking EMT-related progression [46].

4. EMT in OS

Osteosarcoma is a tumor of mesenchymal origin, and unlike carcinomas, it does not exhibit the classical epithelial-to-mesenchymal transition characterized by distinct morphological alterations from an epithelial to a mesenchymal phenotype. Reported EMT-like changes in OS cells have been defined mainly by molecular indicators, including reduced expression of E-cadherin, increased expression of mesenchymal markers such as N-cadherin and vimentin, and elevated levels of EMT-associated transcription factors such as Snail, ZEB1, and Twist. Thus, EMT in OS should not be regarded as a phenomenon accompanied by dramatic morphological conversion, but rather as one that is primarily defined by alterations in molecular markers and changes in cellular properties such as invasiveness, motility, and therapy resistance.

OS is a highly aggressive primary bone malignancy characterized by early pulmonary metastasis, which remains the leading cause of mortality. Approximately 15–20% of patients present with metastases at diagnosis. Of these metastatic lesions, >80% are localized to the lungs [2].The aggressive behavior of OS cells is closely linked to EMT, a dynamic process that enables tumor cells to acquire migratory and invasive properties. OS cells undergo EMT-like transformations despite their mesenchymal origin. This is characterized by upregulated expression of core EMT transcription factors, such as Snail, ZEB1, and Twist. These transcription factors suppress the expression of epithelial markers such as E-cadherin and enhance mesenchymal traits, including N-cadherin and vimentin expression [9]. This phenotypic plasticity enables local tissue infiltration and systemic dissemination, highlighting the critical role of EMT in the progression of OS.

EMT orchestrates the metastatic cascade through sequential mechanisms in OS (Figure 4):

Figure 4.

Figure 4

EMT-mediated mechanisms of metastasis and therapy resistance in OS. In osteosarcoma, which is of mesenchymal origin, EMT is defined by molecular and functional changes rather than classical epithelial-to-mesenchymal morphological conversion. EMT promotes metastasis through loss of E-cadherin, reduced adhesion, and tumor cell detachment. Circulating tumor cells survive via TGF-β/Smad–PI3K/Akt signaling, while integrin αvβ3 supports lung colonization and partial MET. EMT also drives therapy resistance by enriching cancer stem cells through Wnt/β-catenin, enhancing drug efflux, inhibiting apoptosis, and remodeling the tumor microenvironment via TGF-β and IL-6. Created with BioRender.com (accessed on 5 September 2025, publication license). Available from: https://BioRender.com/z6jw9zy.

Primary tumor dissociation: EMT downregulates the expression of cell adhesion molecules, such as E-cadherin, consequently weakening intercellular junctions and enabling the detachment of tumor cells from the primary site [11]. CTC Survival: EMT confers resistance to anoikis, a critical adaptation for CTC survival in circulation. Activation of TGF-β/Smad signaling enhances pro-survival pathways (e.g., PI3K/Akt), allowing CTCs to evade apoptosis [12]. Lung Colonization: EMT increases the expression levels of integrins such as αvβ3, thereby facilitating the attachment of CTCs to lung vasculature. Partial MET later restores epithelial traits, resulting in the progression of metastasis [47]. Single-cell RNA sequencing of OS lung metastases reveals enrichment of EMT-related genes (e.g., SNAI1 and TWIST1), highlighting the dynamic plasticity required for successful colonization [1].

EMT contributes to therapy resistance through multifactorial mechanisms: CSC Enrichment: EMT activates Wnt/β-catenin and Notch pathways to induce CSC phenotypes. These cells overexpress drug efflux pumps (e.g., ABCG2), consequently reducing intracellular concentrations of chemotherapeutics (e.g., methotrexate and cisplatin) [3]. Anti-Apoptotic Signaling: EMT transcription factors such as Snail inhibit pro-apoptotic proteins (e.g., PUMA) while activating NF-κB, thereby blunting chemotherapy-induced apoptosis [48]. Microenvironment Remodeling: EMT-driven secretion of TGF-β and IL-6 leads to the recruitment of cancer-associated fibroblasts (CAFs) and immunosuppressive cells. This creates a protective niche that shields tumor cells from therapy [49]. Clinically, high EMT activity correlates with a poor response to standard MAP regimens (methotrexate, doxorubicin, and cisplatin), particularly in pulmonary metastases [50].

5. Regulation of EMT in OS: Key Signaling Pathways

5.1. TGF-β Signaling Pathway

The TGF-β signaling pathway is a critical regulator of EMT in OS. It facilitates tumor invasion, metastasis, and therapy resistance. TGF-β is widely recognized for its dual role in cancer, acting as a tumor suppressor in early stages and promoting tumor progression in advanced cancers through EMT induction. TGF-β signaling is frequently upregulated in OS, contributing to aggressive tumor behavior and poor prognosis. TGF-β signaling in OS largely follows the canonical Smad-dependent pathway, where ligand binding to TGFBR1/TGFBR2 leads to Smad2/3 phosphorylation, complex formation with Smad4, and nuclear translocation to regulate EMT-associated transcription factors such as Snail, ZEB1, Slug, and Twist in OS cell models [51]. This results in E-cadherin suppression and upregulation of mesenchymal markers such as N-cadherin and vimentin, consequently promoting OS cell plasticity and motility [52]. Additionally, non-Smad pathways, including Wnt/β-catenin and JNK/Smad3, amplify EMT signaling to enhance metastatic potential [53,54].

In preclinical studies, given the pivotal role of TGF-β in EMT-mediated OS progression, therapeutic strategies targeting this pathway are under investigation. The inhibition of the TGFβ-induced EMT-associated kinase switch may reverse the chemo-resistance of OSCs to EGFR inhibitors [55]. Oridonin and glaucocalyxin A inhibit EMT and TGF-β1-induced EMT in OS by suppressing the TGF-β1/Smad2/3 signaling pathway [56,57]. Furthermore, activin membrane-bound inhibitor reconstitution inhibited TGF-β-induced EMT; suppressed cell growth, migration, and invasion; and enhanced cisplatin-induced apoptosis in OS cells by downregulating the TGF-β signaling pathway, suggesting its potential as a therapeutic target [58].

5.2. MAPK Signaling Pathway

The MAPK pathway regulates cell proliferation, survival, and migration in EMT. MAPK signaling is frequently dysregulated in OS, contributing to tumor progression, metastasis, and therapy resistance. Evidence from OS cell models shows that MAPK pathway modulators, including DUSP1, SPRED2, and FGFR1, are involved in EMT regulation in OS, further demonstrating the relevance of this pathway as a therapeutic target [59,60,61].

Among the key regulators, Siglec-15 promotes OS progression by activating the DUSP1/MAPK pathway, which enhances EMT and metastatic potential [61]. Similarly, miR-19-mediated downregulation of SPRED2 expression, a negative regulator of MAPK signaling, increases EMT, proliferation, invasion, and migration in OS cells [59]. Additionally, miRNA-133b, which targets FGFR1, has been identified as a tumor suppressor; it inhibits EMT, migration, and invasion while promoting apoptosis [60]. These findings indicate that MAPK signaling acts as a critical driver of EMT-mediated OS aggressiveness.

Preclinical studies have also evaluated therapeutic strategies. Delphinidin, a natural flavonoid, inhibits EMT through the ERK/p38 MAPK pathway, thereby reducing OS cell motility and invasion [62]. Similarly, lycorine, a plant alkaloid, suppresses OS tumor growth by blocking ERK1/2/MAPK, PI3K/Akt, and Wnt/β-catenin signaling [63]. Furthermore, diosgenin, a steroidal sapogenin, inhibits EMT initiation in OS cells by blocking p38 MAPK, thereby reducing tumor progression [64]. In addition to small molecules, aurora kinase A inhibitor alisertib (MLN8237) exerts pro-apoptotic and pro-autophagic effects in OS by inhibiting p38 MAPK/PI3K/Akt/mTOR signaling, further supporting the therapeutic potential of MAPK inhibition [65].

Given its central role in EMT-mediated tumor progression, MAPK inhibition represents a promising therapeutic approach in OS. Small molecule inhibitors, miRNA-based modulation, and natural compounds targeting MAPK components may provide new strategies for the suppression of EMT, reduction in metastasis, and enhancement of sensitivity to chemotherapy.

5.3. Notch Signaling Pathway

Notch signaling is another key regulator of EMT. Its activation is linked to tumor progression, metastasis, and chemotherapy resistance in OS. In OS cell models, low-dose chemotherapy, such as low concentrations of doxorubicin and cisplatin, can activate Notch signaling. This promotes EMT and increases tumor cell motility, whereas Notch inhibition reverses these effects [66,67].

Beyond chemotherapy-induced EMT, ATG4A overexpression activates Notch, thereby enhancing OS cell migration and invasion [68]. Similarly, SKA3, a spindle-related protein, promotes EMT through Notch activation. Thus, the downregulation of its expression reduces tumor aggressiveness [69].

Given its role in EMT and therapy resistance, targeting Notch signaling could be a promising approach for the suppression of metastasis and improvement of chemotherapy response in OS [67,70].

5.4. STAT3 Signaling Pathway

The STAT3 signaling pathway plays a crucial role in OS progression and EMT regulation. It affects tumor growth, metastasis, and therapy resistance. The JAK2/STAT3 axis has been widely studied in OS, with multiple regulators that either activate or suppress STAT3-mediated EMT identified across OS tissues, cell models, and xenografts [71,72]. Several studies in OS tissues, cell models, and xenografts have highlighted the oncogenic role of STAT3 in EMT regulation. LncRNA NEAT1 promotes OS metastasis and EMT by sponging miR-483, leading to increased STAT3 expression and activation of downstream mesenchymal markers in OS cells [73]. Additionally, tumor-associated macrophages (TAMs) contribute to OS metastasis by activating the COX-2/STAT3 axis, which promotes EMT and enhances invasion potential in cell and mouse models [74].

Targeting STAT3 has emerged as a promising therapeutic strategy for the reversal of EMT and suppression of tumor aggressiveness in OS. Pectolinarigenin, a natural compound, inhibits STAT3 signaling via SHP-1, suppressing EMT and metastasis in cell and xenograft models. This leads to the suppression of EMT and tumor metastasis [72]. Piperlongumine, a natural alkaloid, suppresses osteosarcoma cell growth, migration, invasion, and EMT by downregulating the SOCS3/JAK2/STAT3 pathway via inhibition of miR-30d-5p, thereby reducing tumor aggressiveness in OS cells [75]. Furthermore, apatinib, a VEGFR2 inhibitor, suppresses STAT3 activation, consequently reducing OS migration, invasion, and PD-L1 expression. This suggests a role in the prevention of immune evasion [76]. Moreover, irisin inhibits IL-6–induced EMT in OS cells by suppressing STAT3 phosphorylation and Snail expression; this reduces proliferation, migration, and invasion [77].

Given the strong link between STAT3 activation and EMT in OS, inhibiting STAT3 signaling represents a viable approach for limiting tumor progression, metastasis, and drug resistance. The use of STAT3 inhibitors, miRNA-based modulation, and natural compounds offers new potential strategies for OS treatment.

5.5. PI3/Akt Signaling Pathway

The PI3K/Akt pathway plays a central role in OS progression, with increasing evidence demonstrating its involvement in EMT, tumor growth, and metastasis. Most of the supporting data comes from OS cell studies. Dysregulation of this pathway, particularly through the loss or downregulation of PTEN expression, has been widely reported in OS, contributing to enhanced malignancy and therapeutic resistance [78]. PI3K/Akt activation promotes EMT by activating key transcription factors, including Snail, Slug, and ZEB1. These transcription factors downregulate E-cadherin expression and upregulate that of mesenchymal markers such as N-cadherin and vimentin, further enhancing OS cell motility and invasion [79,80].

Long non-coding RNAs (lncRNAs) and miRNAs are crucial regulators of the PI3K/Akt pathway in OS. The lncRNA RUSC1-AS1 activates PI3K/Akt signaling by targeting miR-340-5p, further promoting tumor migration and invasion [81]. Conversely, tumor-suppressive lncRNAs such as FER1L4 suppress OS progression by inhibiting the PI3K/Akt pathway through miR-18a-5p modulation, leading to reduced EMT and increased apoptosis [82]. Additionally, numerous non-coding RNAs, including miR-802, LncRNA, TDRG1, miRNA-340-5p, LncRNA 691, and MiR-1224-5p, regulate this pathway [83,84,85,86,87,88].

In addition to non-coding RNAs, multiple proteins have been implicated in PI3K/Akt-driven EMT in OS. ZCCHC12, an oncogenic factor, enhances PI3K/Akt signaling, consequently driving EMT and increasing OS cell invasion [89]. Some findings have also been confirmed in xenograft models, STEAP2 and fibulin-4 promote OS metastasis via PI3K/Akt/mTOR signaling to reinforce EMT-related changes [90,91]. The tumor-promoting effects of PI3K/Akt are also mediated by key upstream regulators such as IGF1 and CXCL6, which enhance PI3K/Akt signaling to drive OS growth and metastatic progression [92,93].

5.6. Wnt/β-Catenin Signaling Pathway

Aberrant activation of the Wnt/β-catenin pathway contributes to EMT and OS progression by regulating multiple EMT-associated transcription factors and promoting tumor metastasis. ALOX5AP, a key suppressor of Wnt/β-catenin signaling, inhibits EMT and OS cell invasion. Contrastingly, its low expression is associated with poor prognosis in patient samples [94]. Similarly, microRNA-377-3p suppresses OS progression by targeting CUL1, reducing β-catenin accumulation, and attenuating EMT [95]. In contrast, CCR9 activation facilitates EMT by upregulating the expression of mesenchymal markers such as N-cadherin and vimentin through Wnt/β-catenin signaling, thereby enhancing OS cell migration and invasion in vitro [96].

Bone morphogenetic protein 2 has also been implicated in EMT induction through the Wnt/β-catenin pathway, as it enhances the expression of Wnt3α and p-GSK-3β to further promote OS metastasis in cell and animal models [97]. Moreover, lncRNA-CASC15 and MINCR drive EMT by increasing β-catenin nuclear translocation, thereby reinforcing tumor cell invasiveness [98,99]. Downregulation of the expression of PRR11, a protein linked to OS aggressiveness, reduces cell proliferation and invasion by inhibiting Wnt/β-catenin activity, suggesting its role in the regulation of EMT plasticity [100].

Given the strong involvement of Wnt/β-catenin signaling in OS EMT and metastasis, therapeutic approaches targeting this pathway have been explored. Isoquercitrin, a plant-derived flavonoid, suppresses OS progression by inhibiting β-catenin activation and reducing the expression of EMT markers [101]. Similarly, ginsenoside Rg3 blocks EMT by downregulating Wnt/β-catenin and Snail expression, ultimately impairing OS migration and invasion in cell and xenograft models [102]. Moreover, zinc oxide (ZnO) nanoparticles inhibit OS metastasis by downregulating β-catenin expression via the HIF-1α/BNIP3/LC3B-mediated mitophagy pathway, offering a potential therapeutic strategy against OS in in vitro and in vivo studies [103].

6. The Interplay Between EMT and the Tumor Microenvironment in OS

The tumor microenvironment is a complex ecosystem comprising stromal cells, immune cells, the extracellular matrix (ECM), and signaling molecules, all of which synergistically drive EMT and metastasis in tumors [104]. Here, we dissect the dynamic crosstalk between EMT and key tumor microenvironment components, highlighting their roles in fostering aggressive tumor behavior and therapeutic resistance.

CAFs promote EMT and remodel the tumor microenvironment during OS progression. These cells are highly enriched in recurrent OS and regulate EMT through lysyl oxidase, which enhances OS cell invasion and metastasis [105]. Additionally, CAF-targeting therapies, such as sulfatinib, inhibit the differentiation of skeletal stem cells into CAFs and block fibroblast growth factor secretion, thereby suppressing EMT and OS progression [106].

TAMs are integral to the establishment of an immunosuppressive tumor microenvironment and promotion of OS metastasis through EMT. They enhance OS aggressiveness by upregulating the lncRNA PURPL/miR-363/PDZD2 axis, which suppresses miR-363 to elevate PDZD2 expression, thereby driving tumor proliferation, invasion, and EMT [107]. Additionally, a HMGB1-RAGE-mediated positive feedback loop between OS cells and TAMs reinforces M2 macrophage polarization, further amplifying EMT and metastatic potential through reciprocal activation of high mobility group box 1 (HMGB1) and receptor for advanced glycation end product (RAGE) signaling [108]. Exosomes derived from OS cells can induce M2 macrophage polarization via the Tim-3 pathway, further enhancing tumor migration, invasion, and EMT [109]. Mechanistically, TAMs promote EMT through the COX-2/STAT3 axis, leading to upregulation of the expression of EMT transcription factors and enhanced metastatic potential [74].

In the hypoxic microenvironment, hypoxia-inducible factor-1α (HIF-1α) drives EMT by activating transcription factors such as Snail and Twist. This consequently facilitates tumor cell invasion and metastasis. Moreover, HIF-1α boosts aerobic glycolysis, known as the Warburg effect, by increasing the expression of glucose transporters such as GLUT1 and that of key glycolytic enzymes such as LDHA and HK2, thereby maintaining tumor cell energy metabolism and survival. HIF-1α forms a positive feedback loop with SENP1, further stabilizing its protein expression and reinforcing EMT [110]. Additionally, HIF-1α downregulates β-catenin expression via BNIP3/LC3B-mediated mitophagy or promotes angiogenesis and metastasis through the mTOR/HIF-1α/VEGF signaling axis [103,111]. Targeted interventions such as resveratrol and tetrahydrocurcumin can reverse the EMT phenotype by inhibiting HIF-1α protein accumulation. In contrast, ZnO nanoparticles and ginsenoside Rg3 suppress metabolic reprogramming and metastasis by disrupting downstream HIF-1α pathways. These findings demonstrate that HIF-1α is a central regulator of hypoxic adaptation and a promising therapeutic target [103,111,112,113].

7. EMT-Targeting Non-Coding RNAs as Therapeutic Tools

Non-coding RNAs, including miRNAs, lncRNAs, and circular RNAs (circRNAs), have emerged as key regulators of EMT in OS. As they modulate EMT-associated pathways, these non-coding RNAs can serve as potential therapeutic targets for the inhibition of tumor progression or enhancement of sensitivity to treatment.

The following tables provide an overview of EMT-regulating non-coding RNAs in OS, categorized by their type, regulatory function, targeted pathways, and therapeutic potential. The following tables summarize representative miRNAs [52,55,59,60,83,86,88,95,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159] in Table 1, lncRNAs [71,73,80,98,99,157,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216] in Table 2, and circRNAs [217,218,219,220,221,222,223,224,225,226,227] in Table 3; full comprehensive lists are provided in Supplementary Tables S1–S3.

Table 1.

Representative miRNAs Targeting EMT in OS.

Non-Coding RNA Type Regulatory Function on EMT Target Genes/Pathways Therapeutic Potential Delivery Strategy References
MiR-19 miRNA Promotes SPRED2, ERK/MAPK, Autophagy Enhances OS proliferation, invasion, migration, and EMT miRNA inhibitors PMID: 33023313 [59]
MiR-135b miRNA Promotes TAZ, Hippo pathway, EMT markers Targeting miR-135b may suppress OS proliferation, EMT, and metastasis miRNA inhibitors PMID: 28823959 [133]
MiR-486 miRNA Suppresses PIM1, EMT markers Targeting miR-486 may inhibit OS invasion and EMT miRNA mimics PMID: 30103304 [137]
MiR-429 miRNA Suppresses ZEB1, EMT markers (E-cadherin, Vimentin, N-Cadherin, Snail) Targeting miR-429 may inhibit OS progression and metastasis miRNA mimics PMID: 28694763 [152]
MiR-128 miRNA Suppresses ITGA2, EMT markers Targeting miR-128 may inhibit OS migration, invasion, and EMT miRNA mimics PMID: 26700675 [138]
MiR-22 miRNA Suppresses Twist1, EMT markers Targeting miR-22 may inhibit OS EMT and progression miRNA mimics PMID: 32391253 [114]
MiR-155 miRNA Promotes TNF-α, ERK signaling, CSC markers (CD24, CD90, CD133) Targeting miR-155 may inhibit OS CSC transformation and EMT miRNA inhibitors PMID: 31669646 [122]

This table includes representative miRNAs regulating EMT in osteosarcoma.

Table 2.

Representative lncRNAs Targeting EMT in OS.

Non-Coding RNA Type Regulatory Function on EMT Target Genes/Pathways Therapeutic Potential Delivery Strategy References
ZEB2-AS1 lncRNA Promotes ZEB2-AS1 pathway Promotes OS proliferation, EMT, migration, and invasion Knockdown PMID: 33085924 [174]
HOTAIR lncRNA Suppresses LPR5, Wnt/β-catenin signaling Suppresses OS migration, invasion, and proliferation Overexpression PMID: 36816362 [202]
MALAT1 lncRNA Promotes miR-590-3p Promotes OS proliferation, migration, invasion, and EMT Knockdown PMID: 36277152 [166]
KIAA0087 lncRNA Suppresses miR-411-3p/SOCS1/JAK2/STAT3 Inhibits OS growth, metastasis, and EMT Overexpression PMID: 37009803 [71]
TUG1 lncRNA Promotes miR-144-3p/EZH2/Wnt/β-catenin Promotes OS tumorigenesis, migration, and EMT Knockdown PMID: 28902349 [157]
FER1L4 lncRNA Suppresses miR-18a-5p/SOCS5, PI3K/AKT Induces apoptosis, inhibits EMT and PI3K/AKT activation Overexpression PMID: 31473323 [80]
CRNDE lncRNA Promotes Wnt/β-catenin pathway Enhances OS proliferation, invasion, and EMT Knockdown PMID: 31898343 [211]

This table includes representative lncRNAs regulating EMT in osteosarcoma.

Table 3.

Representative circRNAs Targeting EMT in OS.

Non-Coding RNA Type Regulatory Function on EMT Target Genes/Pathways Therapeutic Potential Delivery Strategy References
Circ_0001721 circRNA Promotes miR-372-3p/MAPK7 Enhances OS progression, migration, invasion, and EMT Knockdown PMID: 32982424 [224]
Circ-FOXM1 circRNA Promotes miR-320a/miR-320b/FOXM1/Wnt Enhances OS proliferation, migration, invasion, and EMT Knockdown PMID: 35799265 [217]
Circ-CDR1as circRNA Promotes miR-7/EGFR/CCNE1/PI3KCD/RAF1 Enhances OS proliferation, migration, invasion, and EMT Knockdown PMID: 30425578 [220]
CircMYO10 circRNA Promotes miR-370-3p/RUVBL1/Wnt/β-catenin Enhances OS proliferation, chromatin remodeling, and EMT Knockdown PMID: 31665067 [227]
CircMGEA5 circRNA Promotes miR-153-3p/miR-8084/ZEB1/Snail Enhances OS metastasis, EMT, and invasion Knockdown PMID: 36564929 [223]
CircPRKAR1B circRNA Promotes miR-361-3p/FZD4/Wnt Enhances OS proliferation, migration, invasion, and EMT Knockdown PMID: 34716310 [225]
Circ_0078767 circRNA Suppresses miR-889/KLF9 Inhibits OS proliferation, migration, invasion, and EMT Overexpression PMID: 35758280 [226]
CircUBAP2 circRNA Promotes miR-641/YAP1 Enhances OS proliferation, invasion, and EMT Knockdown PMID: 32528231 [221]
Circ_0021087 circRNA Suppresses miR-184/FOSB Inhibits OS proliferation, migration, invasion, and EMT Overexpression PMID: 34076278 [218]

This table includes representative circRNAs regulating EMT in osteosarcoma.

8. Conclusions

OS is a highly aggressive primary bone malignancy, with lung metastasis as a key factor in poor prognosis. This review systematically discusses the central role of EMT in OS metastasis and its molecular mechanisms. EMT promotes tumor cell detachment from the primary site, resistance to anoikis, and distant colonization by regulating key transcription factors (e.g., Snail, ZEB1, and Twist) and downstream signaling pathways (e.g., TGF-β, MAPK, and Wnt/β-catenin). Interactions between EMT and the tumor microenvironment (e.g., CAFs, TAMs, and hypoxia) further enhance tumor invasiveness and therapy resistance. Additionally, non-coding RNAs (miRNA, lncRNA, and circRNA) regulate EMT-related pathways and have demonstrated therapeutic potential. For example, miR-429 suppresses ZEB1, lncRNA NEAT1 activates STAT3, and circRNAs modulate signaling networks through competitive miRNA binding.

Challenges remain despite significant advances in understanding the complex EMT regulatory network in OS. First, the dynamic and heterogeneous nature of EMT may limit the efficacy of single-target therapies. Second, the interplay between EMT and the tumor microenvironment requires further investigation. Finally, the clinical translation of EMT-targeting strategies (e.g., small-molecule inhibitors of TGF-β or STAT3) needs validation for safety and efficacy. Future research should focus on multi-target combination therapies by integrating EMT inhibitors with immunotherapy or chemotherapy. Moreover, single-cell sequencing and spatial transcriptomics can elucidate the spatiotemporal heterogeneity of EMT, guiding precision treatment strategies. Thus, targeting core EMT pathways and their microenvironmental regulators may provide new therapeutic directions, consequently overcoming treatment bottlenecks and improving patient outcomes.

Acknowledgments

I would like to express my sincere gratitude to the bone tumor group of the Department of Orthopedic Surgery, Shiga University of Medical Science for their continuous support. I especially thank Kosei Ando and Yasunari Takemura for their dedicated guidance and valuable suggestions during the preparation of this manuscript. I also thank Shinji Imai for providing the opportunity and environment to carry out this research.

Abbreviations

The following abbreviations are used in this manuscript:

OS Osteosarcoma
EMT Epithelial–Mesenchymal Transition
TGF-β Transforming Growth Factor-beta
RTK Receptor Tyrosine Kinase
MAPK Mitogen-Activated Protein Kinase
PI3K Phosphoinositide 3-Kinase
AKT Protein Kinase B
mTOR Mechanistic Target of Rapamycin
miRNA MicroRNA
lncRNA Long Non-Coding RNA
circRNA Circular RNA
ceRNA Competing Endogenous RNA
TF Transcription Factor
ncRNA Non-Coding RNA

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/cancers17172922/s1, Table S1: miRNAs Targeting EMT in OS; Table S2: lncRNAs Targeting EMT in OS; Table S3: circRNAs Targeting EMT in OS.

Author Contributions

Conceptualization, F.L., Y.T. and K.A.; methodology, F.L.; software, F.L.; validation, F.L.; formal analysis, F.L.; resources, F.L.; data curation, F.L.; writing—original draft preparation, F.L.; writing—review and editing, F.L. and K.A.; visualization, F.L.; supervision, S.I., K.A., T.-H.P. and T.Y. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding Statement

This research received no external funding.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Belayneh R., Fourman M.S., Bhogal S., Weiss K.R. Update on osteosarcoma. Curr. Oncol. Rep. 2021;23:71. doi: 10.1007/s11912-021-01053-7. [DOI] [PubMed] [Google Scholar]
  • 2.Beird H.C., Bielack S.S., Flanagan A.M., Gill J., Heymann D., Janeway K.A., Livingston J.A., Roberts R.D., Strauss S.J., Gorlick R. Osteosarcoma. Nat. Rev. Dis. Prim. 2022;8:77. doi: 10.1038/s41572-022-00409-y. [DOI] [PubMed] [Google Scholar]
  • 3.Roy S., Sunkara R.R., Parmar M.Y., Shaikh S., Waghmare S.K. EMT imparts cancer stemness and plasticity: New perspectives and therapeutic potential. Front. Biosci. 2021;26:238–265. doi: 10.2741/4893. [DOI] [PubMed] [Google Scholar]
  • 4.Strauss S.J., Frezza A.M., Abecassis N., Bajpai J., Bauer S., Biagini R., Bielack S., Blay J.Y., Bolle S., Bonvalot S., et al. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2021;32:1520–1536. doi: 10.1016/j.annonc.2021.08.1995. [DOI] [PubMed] [Google Scholar]
  • 5.Rothzerg E., Pfaff A.L., Koks S. Innovative approaches for treatment of osteosarcoma. Exp. Biol. Med. 2022;247:310–316. doi: 10.1177/15353702211067718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Babaei G., Aziz S.G.G., Jaghi N.Z.Z. EMT, Cancer stem cells and autophagy; The three main axes of metastasis. Biomed. Pharmacother. 2021;133:110909. doi: 10.1016/j.biopha.2020.110909. [DOI] [PubMed] [Google Scholar]
  • 7.Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018;13:395–412. doi: 10.1146/annurev-pathol-020117-043854. [DOI] [PubMed] [Google Scholar]
  • 8.Genna A., Vanwynsberghe A.M., Villard A.V., Pottier C., Ancel J., Polette M., Gilles C. EMT-associated heterogeneity in circulating tumor cells: Sticky friends on the road to metastasis. Cancers. 2020;12:1632. doi: 10.3390/cancers12061632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hinton K., Kirk A., Paul P., Persad S. Regulation of the epithelial to mesenchymal transition in osteosarcoma. Biomolecules. 2023;13:398. doi: 10.3390/biom13020398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Pastushenko I., Mauri F., Song Y., de Cock F., Meeusen B., Swedlund B., Impens F., Van Haver D., Opitz M., Thery M., et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 2021;589:448–455. doi: 10.1038/s41586-020-03046-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Brabletz S., Schuhwerk H., Brabletz T., Stemmler M.P. Dynamic EMT: A multi-tool for tumor progression. EMBO J. 2021;40:e108647. doi: 10.15252/embj.2021108647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Fontana R., Mestre-Farrera A., Yang J. Update on epithelial-mesenchymal plasticity in cancer progression. Annu. Rev. Pathol. Mech. Dis. 2024;19:133–156. doi: 10.1146/annurev-pathmechdis-051222-122423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Brabletz T., Jung A., Spaderna S., Hlubek F., Kirchner T. Opinion: Migrating cancer stem cells—An integrated concept of malignant tumour progression. Nat. Rev. Cancer. 2005;5:744–749. doi: 10.1038/nrc1694. [DOI] [PubMed] [Google Scholar]
  • 14.Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., Brooks M., Reinhard F., Zhang C.C., Shipitsin M., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–715. doi: 10.1016/j.cell.2008.03.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Burk U., Schubert J., Wellner U., Schmalhofer O., Vincan E., Spaderna S., Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–589. doi: 10.1038/embor.2008.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., Vadas M.A., Khew-Goodall Y., Goodall G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008;10:593–601. doi: 10.1038/ncb1722. [DOI] [PubMed] [Google Scholar]
  • 17.Yu M., Bardia A., Wittner B.S., Stott S.L., Smas M.E., Ting D.T., Isakoff S.J., Ciciliano J.C., Wells M.N., Shah A.M., et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–584. doi: 10.1126/science.1228522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Zheng X., Carstens J.L., Kim J., Scheible M., Kaye J., Sugimoto H., Wu C.C., LeBleu V.S., Kalluri R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–530. doi: 10.1038/nature16064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Fuxe J., Vincent T., Garcia de Herreros A. Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes. Cell Cycle. 2010;9:2363–2374. doi: 10.4161/cc.9.12.12050. [DOI] [PubMed] [Google Scholar]
  • 20.Pallasch F.B., Schumacher U. Angiotensin inhibition, TGF-β and EMT in cancer. Cancers. 2020;12:2785. doi: 10.3390/cancers12102785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Lee J.H., Massagué J. TGF-β in developmental and fibrogenic EMTs. Semin. Cancer Biol. 2022;86:136–145. doi: 10.1016/j.semcancer.2022.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Inui N., Sakai S., Kitagawa M. Molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to TGF-β and the Ubiquitin-Proteasome pathway. Int. J. Mol. Sci. 2021;22:6107. doi: 10.3390/ijms22116107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Xu J., Lamouille S., Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–172. doi: 10.1038/cr.2009.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Tang X., Sui X., Weng L., Liu Y. SNAIL1: Linking tumor metastasis to immune evasion. Front. Immunol. 2021;12:724200. doi: 10.3389/fimmu.2021.724200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Luo K. Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb. Perspect. Biol. 2017;9:a022137. doi: 10.1101/cshperspect.a022137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Derynck R., Muthusamy B.P., Saeteurn K.Y. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr. Opin. Cell Biol. 2014;31:56–66. doi: 10.1016/j.ceb.2014.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Zhang M., Zhang Y.Y., Chen Y., Wang J., Wang Q., Lu H. TGF-β signaling and resistance to cancer therapy. Front. Cell Dev. Biol. 2021;9:786728. doi: 10.3389/fcell.2021.786728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Guo Y.J., Pan W.W., Liu S.B., Shen Z.F., Xu Y., Hu L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020;19:1997–2007. doi: 10.3892/etm.2020.8454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Su J., Morgani S.M., David C.J., Wang Q., Er E.E., Huang Y.H., Basnet H., Zou Y., Shu W., Soni R.K., et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature. 2020;577:566–571. doi: 10.1038/s41586-019-1897-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Lee J.H., Basnet H., Sanchez-Rivera F., Wang Z., Li L., Massague J. Mechanistic basis for TGF-β-induced fibrogenic EMTs in metastasis. Cancer Res. 2023;83:PR004 [Google Scholar]
  • 31.Lee J.H., Sánchez-Rivera F.J., He L., Basnet H., Chen F.X., Spina E., Li L., Torner C., Chan J.E., Yarlagadda D.V.K., et al. TGF-β and RAS jointly unmask primed enhancers to drive metastasis. Cell. 2024;187:6182–6199.e29. doi: 10.1016/j.cell.2024.08.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Wang Z., Li Y., Kong D., Sarkar F.H. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr. Drug Targets. 2010;11:745–751. doi: 10.2174/138945010791170860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Zavadil J., Cermak L., Soto-Nieves N., Böttinger E.P. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 2004;23:1155–1165. doi: 10.1038/sj.emboj.7600069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition. Cells. 2020;9:217. doi: 10.3390/cells9010217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Sun S., Jin S., Guo R. Role of STAT3 in Resistance of Non-small Cell Lung Cancer. Chin. J. Lung Cancer. 2019;22:457–463. doi: 10.3779/j.issn.1009-3419.2019.07.08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Gong L., Wu Z., Zhou Q. The roles of signal transducer and activator of transcription 3 in tumor metastasis. Chin. J. Lung Cancer. 2010;13:980–984. doi: 10.3779/j.issn.1009-3419.2010.10.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Loh C.Y., Chai J.Y., Tang T.F., Wong W.F., Sethi G., Shanmugam M.K., Chong P.P., Looi C.Y. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 2019;8:1118. doi: 10.3390/cells8101118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Maharati A., Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun. Signal. 2023;21:201. doi: 10.1186/s12964-023-01225-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Worby C.A., Dixon J.E. Pten. Annu. Rev. Biochem. 2014;83:641–669. doi: 10.1146/annurev-biochem-082411-113907. [DOI] [PubMed] [Google Scholar]
  • 40.Chen C.Y., Chen J., He L., Stiles B.L. PTEN: Tumor suppressor and metabolic regulator. Front. Endocrinol. 2018;9:338. doi: 10.3389/fendo.2018.00338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Xu W., Yang Z., Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes. Migr. 2015;9:317–324. doi: 10.1080/19336918.2015.1016686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Xue W., Yang L., Chen C., Ashrafizadeh M., Tian Y., Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell. Mol. Life Sci. 2024;81:79. doi: 10.1007/s00018-023-05099-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Xi Y., Chen Y. Wnt signaling pathway: Implications for therapy in lung cancer and bone metastasis. Cancer Lett. 2014;353:8–16. doi: 10.1016/j.canlet.2014.07.010. [DOI] [PubMed] [Google Scholar]
  • 44.Breuer E.K., Fukushiro-Lopes D., Dalheim A., Burnette M., Zartman J., Kaja S., Wells C., Campo L., Curtis K.J., Romero-Moreno R., et al. Potassium channel activity controls breast cancer metastasis by affecting β-catenin signaling. Cell Death Dis. 2019;10:180. doi: 10.1038/s41419-019-1429-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Katoh M., Nakagama H. FGF receptors: Cancer biology and therapeutics. Med. Res. Rev. 2014;34:280–300. doi: 10.1002/med.21288. [DOI] [PubMed] [Google Scholar]
  • 46.Yoshida G.J. Regulation of heterogeneous cancer-associated fibroblasts: The molecular pathology of activated signaling pathways. J. Exp. Clin. Cancer Res. 2020;39:112. doi: 10.1186/s13046-020-01611-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Pastushenko I., Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–226. doi: 10.1016/j.tcb.2018.12.001. [DOI] [PubMed] [Google Scholar]
  • 48.Rho S.B., Byun H.J., Kim B.R., Lee C.H. Snail promotes cancer cell proliferation via its interaction with the BIRC3. Biomol. Ther. 2022;30:380–388. doi: 10.4062/biomolther.2022.063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Yang D., Liu J., Qian H., Zhuang Q. Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp. Mol. Med. 2023;55:1322–1332. doi: 10.1038/s12276-023-01013-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.De Las Rivas J., Brozovic A., Izraely S., Casas-Pais A., Witz I.P., Figueroa A. Cancer drug resistance induced by EMT: Novel therapeutic strategies. Arch. Toxicol. 2021;95:2279–2297. doi: 10.1007/s00204-021-03063-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Ge R., Huang G.M. Targeting transforming growth factor beta signaling in metastatic osteosarcoma. J. Bone Oncol. 2023;43:100513. doi: 10.1016/j.jbo.2023.100513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Xu X., Liu M. miR-522 stimulates TGF-β/Smad signaling pathway and promotes osteosarcoma tumorigenesis by targeting PPM1A. J. Cell. Biochem. 2019;120:18425–18434. doi: 10.1002/jcb.29160. [DOI] [PubMed] [Google Scholar]
  • 53.Zhang D., Han S., Pan X., Li H., Zhao H., Gao X., Wang S. EFEMP1 binds to STEAP1 to promote osteosarcoma proliferation and invasion via the Wnt/β-catenin and TGF-β/Smad2/3 signal pathways. J. Bone Oncol. 2022;37:100458. doi: 10.1016/j.jbo.2022.100458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.He D., Gao J., Zheng L., Liu S., Ye L., Lai H., Pan B., Pan W., Lou C., Chen Z., et al. TGF-β inhibitor RepSox suppresses osteosarcoma via the JNK/Smad3 signaling pathway. Int. J. Oncol. 2021;59:84. doi: 10.3892/ijo.2021.5264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Wang T., Wang D., Zhang L., Yang P., Wang J., Liu Q., Yan F., Lin F. The TGFβ-miR-499a-SHKBP1 pathway induces resistance to EGFR inhibitors in osteosarcoma cancer stem cell-like cells. J. Exp. Clin. Cancer Res. 2019;38:226. doi: 10.1186/s13046-019-1195-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Sun Y., Jiang X., Lu Y., Zhu J., Yu L., Ma B., Zhang Q. Oridonin prevents epithelial-mesenchymal transition and TGF-β1-induced epithelial-mesenchymal transition by inhibiting TGF-β1/Smad2/3 in osteosarcoma. Chem. Biol. Interact. 2018;296:57–64. doi: 10.1016/j.cbi.2018.09.013. [DOI] [PubMed] [Google Scholar]
  • 57.Jiang X., Zhang Z., Song C., Deng H., Yang R., Zhou L., Sun Y., Zhang Q. Glaucocalyxin A reverses EMT and TGF-β1-induced EMT by inhibiting TGF-β1/Smad2/3 signaling pathway in osteosarcoma. Chem. Biol. Interact. 2019;307:158–166. doi: 10.1016/j.cbi.2019.05.005. [DOI] [PubMed] [Google Scholar]
  • 58.Liu F., Wang K., Zhang L., Yang Y.L. Bone morphogenetic protein and activin membrane-bound inhibitor suppress bone cancer progression in MG63 and SAOS cells via regulation of the TGF-β-induced EMT signaling pathway. Oncol. Lett. 2018;16:5113–5121. doi: 10.3892/ol.2018.9268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Xie C., Liu S., Wu B., Zhao Y., Chen B., Guo J., Qiu S., Cao Y.M. miR-19 promotes cell proliferation, invasion, migration, and EMT by inhibiting SPRED2-mediated autophagy in osteosarcoma cells. Cell Transplant. 2020;29:963689720962460. doi: 10.1177/0963689720962460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Gao G., Tian Z., Zhu H.Y., Ouyang X.Y. miRNA-133b targets FGFR1 and presents multiple tumor suppressor activities in osteosarcoma. Cancer Cell Int. 2018;18:210. doi: 10.1186/s12935-018-0696-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Fan M.K., Zhang G.C., Chen W., Qi L.L., Xie M.F., Zhang Y.Y., Wang L., Zhang Q. Siglec-15 promotes tumor progression in osteosarcoma via DUSP1/MAPK pathway. Front. Oncol. 2021;11:710689. doi: 10.3389/fonc.2021.710689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Kang H.M., Park B.S., Kang H.K., Park H.R., Yu S.B., Kim I.R. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ. Toxicol. 2018;33:640–649. doi: 10.1002/tox.22548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Yuan X.H., Zhang P., Yu T.T., Huang H.K., Zhang L.L., Yang C.M., Tan T., Yang S.D., Luo X.J., Luo J.Y. Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/β-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. Am. J. Transl. Res. 2020;12:5381–5398. [PMC free article] [PubMed] [Google Scholar]
  • 64.Huang H., Nie C., Qin X., Zhou J., Zhang L. Diosgenin inhibits the epithelial-mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncol. Lett. 2019;18:4278–4287. doi: 10.3892/ol.2019.10780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Niu N.K., Wang Z.L., Pan S.T., Ding H.Q., Au G.H.T., He Z.X., Zhou Z.W., Xiao G., Yang Y.X., Zhang X., et al. Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway. Drug Des. Dev. Ther. 2015;9:1555–1584. doi: 10.2147/DDDT.S74197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Yang J., Guo W., Wang L., Yu L., Mei H., Fang S., Chen A., Liu Y., Xia K., Liu G. Notch signaling is important for epithelial-mesenchymal transition induced by low concentrations of doxorubicin in osteosarcoma cell lines. Oncol. Lett. 2017;13:2260–2268. doi: 10.3892/ol.2017.5708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Dai G., Liu G., Zheng D., Song Q. Inhibition of the Notch signaling pathway attenuates progression of cell motility, metastasis, and epithelial-to-mesenchymal transition-like phenomena induced by low concentrations of cisplatin in osteosarcoma. Eur. J. Pharmacol. 2021;899:174058. doi: 10.1016/j.ejphar.2021.174058. [DOI] [PubMed] [Google Scholar]
  • 68.Su H., Zhu G., Rong X., Zhou Y., Jiang P., Chen P. Upregulation of ATG4A promotes osteosarcoma cell epithelial-to-mesenchymal transition through the Notch signaling pathway. Int. J. Clin. Exp. Pathol. 2017;10:7975–7982. [PMC free article] [PubMed] [Google Scholar]
  • 69.Liang G., Duan C., He J., Shi L. Spindle and kinetochore-related complex subunit 3 has a protumour function in osteosarcoma by activating the Notch pathway. Toxicol. Appl. Pharmacol. 2024;483:116826. doi: 10.1016/j.taap.2024.116826. [DOI] [PubMed] [Google Scholar]
  • 70.Hu Y.Y., Zheng M.H., Zhang R., Liang Y.M., Han H. Notch signaling pathway and cancer metastasis. Adv. Exp. Med. Biol. 2012;727:186–198. doi: 10.1007/978-1-4614-0899-4_14. [DOI] [PubMed] [Google Scholar]
  • 71.Gong H., Tao Y., Xiao S., Li X., Fang K., Wen J., He P., Zeng M. LncRNA KIAA0087 suppresses the progression of osteosarcoma by mediating the SOCS1/JAK2/STAT3 signaling pathway. Exp. Mol. Med. 2023;55:831–843. doi: 10.1038/s12276-023-00972-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Zhang T., Li S., Li J., Yin F., Hua Y., Wang Z., Wang H., Zuo D., Xu J., Cai Z. Pectolinarigenin acts as a potential anti-osteosarcoma agent via mediating SHP-1/JAK2/STAT3 signaling. Biomed. Pharmacother. 2022;153:113323. doi: 10.1016/j.biopha.2022.113323. [DOI] [PubMed] [Google Scholar]
  • 73.Chen Y., Li J., Xiao J.K., Xiao L., Xu B.W., Li C. The lncRNA NEAT1 promotes the epithelial-mesenchymal transition and metastasis of osteosarcoma cells by sponging miR-483 to upregulate STAT3 expression. Cancer Cell Int. 2021;21:90. doi: 10.1186/s12935-021-01780-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Han Y., Guo W., Ren T., Huang Y., Wang S., Liu K., Zheng B., Yang K., Zhang H., Liang X. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett. 2019;440:116–125. doi: 10.1016/j.canlet.2018.10.011. [DOI] [PubMed] [Google Scholar]
  • 75.Hu Y., Luo X., Zhou J., Chen S., Gong M., Deng Y., Zhang H. Piperlongumine inhibits the progression of osteosarcoma by downregulating the SOCS3/JAK2/STAT3 pathway via miR-30d-5p. Life Sci. 2021;277:119501. doi: 10.1016/j.lfs.2021.119501. [DOI] [PubMed] [Google Scholar]
  • 76.Zheng B., Ren T., Huang Y., Guo W. Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3. Biochem. Biophys. Res. Commun. 2018;495:1695–1701. doi: 10.1016/j.bbrc.2017.12.032. [DOI] [PubMed] [Google Scholar]
  • 77.Kong G., Jiang Y., Sun X., Cao Z., Zhang G., Zhao Z., Zhao Y., Yu Q., Cheng G. Irisin reverses the IL-6 induced epithelial-mesenchymal transition in osteosarcoma cell migration and invasion through the STAT3/Snail signaling pathway. Oncol. Rep. 2017;38:2647–2656. doi: 10.3892/or.2017.5973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Sadrkhanloo M., Paskeh M.D.A., Hashemi M., Raesi R., Bahonar A., Nakhaee Z., Entezari M., Beig Goharrizi M.A.S., Salimimoghadam S., Ren J., et al. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol. Res. Prim. 2023;251:154902. doi: 10.1016/j.prp.2023.154902. [DOI] [PubMed] [Google Scholar]
  • 79.Liao X., Wei R., Zhou J., Wu K., Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front. Mol. Biosci. 2024;11:1327459. doi: 10.3389/fmolb.2024.1327459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Ye F., Tian L., Zhou Q., Feng D. LncRNA FER1L4 induces apoptosis and suppresses EMT and the activation of PI3K/AKT pathway in osteosarcoma cells via inhibiting miR-18a-5p to promote SOCS5. Gene. 2019;721:144093. doi: 10.1016/j.gene.2019.144093. [DOI] [PubMed] [Google Scholar]
  • 81.Tong C.J., Deng Q.C., Ou D.J., Long X., Liu H., Huang K. LncRNA RUSC1-AS1 promotes osteosarcoma progression through regulating the miR-340-5p and PI3K/AKT pathway. Aging. 2021;13:20116–20130. doi: 10.18632/aging.203047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Ma L., Zhang L., Guo A., Liu L.C., Yu F., Diao N., Xu C., Wang D. Overexpression of FER1L4 promotes the apoptosis and suppresses epithelial-mesenchymal transition and stemness markers via activating PI3K/AKT signaling pathway in osteosarcoma cells. Pathol. Res. Prim. 2019;215:152412. doi: 10.1016/j.prp.2019.04.004. [DOI] [PubMed] [Google Scholar]
  • 83.Gao L.F., Jia S., Zhang Q.M., Xia Y.F., Li C.J., Li Y.H. MicroRNA-802 promotes the progression of osteosarcoma through targeting p27 and activating PI3K/AKT pathway. Clin. Transl. Oncol. 2022;24:266–275. doi: 10.1007/s12094-021-02683-w. [DOI] [PubMed] [Google Scholar]
  • 84.Huang Y., Xu Y.Q., Feng S.Y., Zhang X., Ni J.D. LncRNA TDRG1 promotes proliferation, invasion and epithelial-mesenchymal transformation of osteosarcoma through PI3K/AKT signal pathway. Cancer Manag. Res. 2020;12:4531–4540. doi: 10.2147/CMAR.S248964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Gao T., Zou M., Shen T., Duan S. Dysfunction of miR-802 in tumors. J. Clin. Lab. Anal. 2021;35:e23989. doi: 10.1002/jcla.23989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Fan H.P., Wang S.Y., Shi Y.Y., Sun J. MicroRNA-340-5p inhibits the malignant phenotypes of osteosarcoma by directly targeting NRF2 and deactivating the PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci. 2021;25:3661–3669. doi: 10.26355/eurrev_202105_25932. [DOI] [PubMed] [Google Scholar]
  • 87.Yao P., Ni Y., Liu C. Long Non-Coding RNA 691 regulated PTEN/PI3K/AKT signaling pathway in osteosarcoma through miRNA-9-5p. OncoTargets Ther. 2020;13:4597–4606. doi: 10.2147/OTT.S249827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Jin B., Jin D., Zhuo Z., Zhang B., Chen K. MiR-1224–5p Activates Autophagy, Cell Invasion and Inhibits Epithelial-to-Mesenchymal Transition in Osteosarcoma Cells by Directly Targeting PLK1 through PI3K/AKT/mTOR Signaling Pathway. OncoTargets Ther. 2020;13:11807–11818. doi: 10.2147/OTT.S274451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Cui Y., Dong Y.Y. ZCCHC12 promotes the progression of osteosarcoma via PI3K/AKT pathway. Aging. 2022;14:7505–7516. doi: 10.18632/aging.204296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Zhang D., Liu H., Wang W., Xu G., Yin C., Wang S. STEAP2 promotes osteosarcoma progression by inducing epithelial-mesenchymal transition via the PI3K/AKT/mTOR signaling pathway and is regulated by EFEMP2. Cancer Biol. Ther. 2022;23:1–16. doi: 10.1080/15384047.2022.2136465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Zhang D., Wang S., Chen J., Liu H., Lu J., Jiang H., Huang A., Chen Y. Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3K/Akt/mTOR pathway. Int. J. Oncol. 2017;50:1513–1530. doi: 10.3892/ijo.2017.3921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Dai Y., Huang G., Zhong X., Yang Y., Ye J. N6-(2-hydroxyethyl)-adenosine (HEA) exhibits antitumor activity for osteosarcoma progression by regulating IGF1 signaling. Fitoterapia. 2025;180:106319. doi: 10.1016/j.fitote.2024.106319. [DOI] [PubMed] [Google Scholar]
  • 93.Liu G., An L., Zhang H., Du P., Sheng Y. Activation of CXCL6/CXCR1/2 axis promotes the growth and metastasis of osteosarcoma cells in vitro and in vivo. Front. Pharmacol. 2019;10:307. doi: 10.3389/fphar.2019.00307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Han G.D., Dai J., Hui H.X., Zhu J. ALOX5AP suppresses osteosarcoma progression via Wnt/β-catenin/EMT pathway and associates with clinical prognosis and immune infiltration. J. Orthop. Surg. Res. 2023;18:446. doi: 10.1186/s13018-023-03919-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Liang K., Liao L., Liu Q., Ouyang Q., Jia L., Wu G. microRNA-377-3p inhibits osteosarcoma progression by targeting CUL1 and regulating Wnt/β-catenin signaling pathway. Clin. Transl. Oncol. 2021;23:2350–2357. doi: 10.1007/s12094-021-02633-6. [DOI] [PubMed] [Google Scholar]
  • 96.Kong H., Yu W., Chen Z., Li H., Ye G., Hong J., Xie Z., Chen K., Wu Y., Shen H. CCR9 initiates epithelial-mesenchymal transition by activating Wnt/β-catenin pathways to promote osteosarcoma metastasis. Cancer Cell Int. 2021;21:648. doi: 10.1186/s12935-021-02320-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Tian H., Zhou T., Chen H., Li C., Jiang Z., Lao L., Kahn S.A., Duarte M.E.L., Zhao J., Daubs M.D., et al. Bone morphogenetic protein-2 promotes osteosarcoma growth by promoting epithelial-mesenchymal transition (EMT) through the Wnt/β-catenin signaling pathway. J. Orthop. Res. 2019;37:1638–1648. doi: 10.1002/jor.24244. [DOI] [PubMed] [Google Scholar]
  • 98.Bai S., Li Y., Wang Y., Zhou G., Liu C., Xiong W., Chen J. Long non-coding RNA MINCR regulates the growth and metastasis of human osteosarcoma cells via Wnt/β-catenin signaling pathway. Acta Biochim. Pol. 2022;69:551–557. doi: 10.18388/abp.2020_5804. [DOI] [PubMed] [Google Scholar]
  • 99.Wang H., Zhang P. lncRNA-CASC15 promotes osteosarcoma proliferation and metastasis by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Oncol. Rep. 2021;45:76. doi: 10.3892/or.2021.8027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Li K., Yu H., Zhao C., Li J., Tan R., Chen L. Down-regulation of PRR11 affects the proliferation, migration and invasion of osteosarcoma by inhibiting the Wnt/β-catenin pathway. J. Cancer. 2021;12:6656–6664. doi: 10.7150/jca.62491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Wei Z., Zheng D., Pi W., Qiu Y., Xia K., Guo W. Isoquercitrin restrains the proliferation and promotes apoptosis of human osteosarcoma cells by inhibiting the Wnt/β-catenin pathway. J. Bone Oncol. 2023;38:100468. doi: 10.1016/j.jbo.2023.100468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Mao X., Jin Y., Feng T., Wang H., Liu D., Zhou Z., Yan Q., Yang H., Yang J., Yang J., et al. Ginsenoside Rg3 inhibits the growth of osteosarcoma and attenuates metastasis through the Wnt/β-catenin and EMT signaling pathway. Evid.-Based Complement. Altern. Med. 2020;2020:6065124. doi: 10.1155/2020/6065124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.He G., Nie J.J., Liu X., Ding Z., Luo P., Liu Y., Zhang B.W., Wang R., Liu X., Hai Y., et al. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Bioact. Mater. 2023;19:690–702. doi: 10.1016/j.bioactmat.2022.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Taki M., Abiko K., Ukita M., Murakami R., Yamanoi K., Yamaguchi K., Hamanishi J., Baba T., Matsumura N., Mandai M. Tumor immune microenvironment during epithelial-mesenchymal transition. Clin. Cancer Res. 2021;27:4669–4679. doi: 10.1158/1078-0432.CCR-20-4459. [DOI] [PubMed] [Google Scholar]
  • 105.Huang X., Wang L., Guo H., Zhang W., Shao Z. Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics. 2022;12:5877–5887. doi: 10.7150/thno.73714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Liao S., Li J., Gao S., Han Y., Han X., Wu Y., Bi J., Xu M., Bi W. Sulfatinib, a novel multi-targeted tyrosine kinase inhibitor of FGFR1, CSF1R, and VEGFR1-3, suppresses osteosarcoma proliferation and invasion via dual role in tumor cells and tumor microenvironment. Front. Oncol. 2023;13:1158857. doi: 10.3389/fonc.2023.1158857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.He F., Ding G., Jiang W., Fan X., Zhu L. Effect of tumor-associated macrophages on lncRNA PURPL/miR-363/PDZD2 axis in osteosarcoma cells. Cell Death Discov. 2021;7:307. doi: 10.1038/s41420-021-00700-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Hou C., Lu M., Lei Z., Dai S., Chen W., Du S., Jin Q., Zhou Z., Li H. HMGB1 positive feedback loop between cancer cells and tumor-associated macrophages promotes osteosarcoma migration and invasion. Lab. Investig. 2023;103:100054. doi: 10.1016/j.labinv.2022.100054. [DOI] [PubMed] [Google Scholar]
  • 109.Cheng Z., Wang L., Wu C., Huang L., Ruan Y., Xue W. Tumor-derived exosomes induced M2 macrophage polarization and promoted the metastasis of osteosarcoma cells through Tim-3. Arch. Med. Res. 2021;52:200–210. doi: 10.1016/j.arcmed.2020.10.018. [DOI] [PubMed] [Google Scholar]
  • 110.Wang X., Liang X., Liang H., Wang B. SENP1/HIF-1α feedback loop modulates hypoxia-induced cell proliferation, invasion, and EMT in human osteosarcoma cells. J. Cell. Biochem. 2018;119:1819–1826. doi: 10.1002/jcb.26342. [DOI] [PubMed] [Google Scholar]
  • 111.Zeng X., Liu S., Yang H., Jia M., Liu W., Zhu W. Synergistic anti-tumour activity of ginsenoside Rg3 and doxorubicin on proliferation, metastasis and angiogenesis in osteosarcoma by modulating mTOR/HIF-1α/VEGF and EMT signalling pathways. J. Pharm. Pharmacol. 2023;75:1405–1417. doi: 10.1093/jpp/rgad070. [DOI] [PubMed] [Google Scholar]
  • 112.Sun Y., Wang H., Liu M., Lin F., Hua J. Resveratrol abrogates the effects of hypoxia on cell proliferation, invasion and EMT in osteosarcoma cells through downregulation of the HIF-1α protein. Mol. Med. Rep. 2015;11:1975–1981. doi: 10.3892/mmr.2014.2913. [DOI] [PubMed] [Google Scholar]
  • 113.Zhang Y., Liu Y., Zou J., Yan L., Du W., Zhang Y., Sun H., Lu P., Geng S., Gu R., et al. Tetrahydrocurcumin induces mesenchymal-epithelial transition and suppresses angiogenesis by targeting HIF-1α and autophagy in human osteosarcoma. Oncotarget. 2017;8:91134–91149. doi: 10.18632/oncotarget.19845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Zhu S.T., Wang X., Wang J.Y., Xi G.H., Liu Y. Downregulation of miR-22 contributes to epithelial-mesenchymal transition in osteosarcoma by targeting Twist1. Front. Oncol. 2020;10:406. doi: 10.3389/fonc.2020.00406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Zhao X., Xu Y., Sun X., Ma Y., Zhang Y., Wang Y., Guan H., Jia Z., Li Y., Wang Y. miR-17-5p promotes proliferation and epithelial-mesenchymal transition in human osteosarcoma cells by targeting SRC kinase signaling inhibitor 1. J. Cell. Biochem. 2019;120:5495–5504. doi: 10.1002/jcb.27832. [DOI] [PubMed] [Google Scholar]
  • 116.Zhang Z., Zhang W., Mao J., Xu Z., Fan M. miR-186-5p functions as a tumor suppressor in human osteosarcoma by targeting FOXK1. Cell. Physiol. Biochem. 2019;52:553–564. doi: 10.33594/000000039. [DOI] [PubMed] [Google Scholar]
  • 117.Zhang Z., Zhang M., Chen Q., Zhang Q. Downregulation of microRNA-145 promotes epithelial-mesenchymal transition via regulating Snail in osteosarcoma. Cancer Gene Ther. 2017;24:83–88. doi: 10.1038/cgt.2017.1. [DOI] [PubMed] [Google Scholar]
  • 118.Zhang S., Chen H., Liu W., Fang L., Qian Z., Kong R., Zhang Q., Li J., Cao X. miR-766-3p targeting BCL9L suppressed tumorigenesis, epithelial-mesenchymal transition, and metastasis through the β-catenin signaling pathway in osteosarcoma cells. Front. Cell Dev. Biol. 2020;8:594135. doi: 10.3389/fcell.2020.594135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Zhang H., Zhang J., Meng F., Zhu H., Yan H., Guo Y., Zhang S. MicroRNA-93 promotes the tumorigenesis of osteosarcoma by targeting TIMP2. Biosci. Rep. 2019;39:BSR20191237. doi: 10.1042/BSR20191237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Yu X., Wang X., Xu F., Zhang X., Wang M., Zhou R., Sun Z., Pan X., Feng L., Zhang W., et al. Mir-615-3p promotes osteosarcoma progression via the SESN2/AMPK/mTOR pathway. Cancer Cell Int. 2024;24:411. doi: 10.1186/s12935-024-03604-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Yu M., Guo D., Cao Z., Xiao L., Wang G. Inhibitory effect of MicroRNA-107 on osteosarcoma malignancy through regulation of Wnt/β-catenin signaling in vitro. Cancer Investig. 2018;36:175–184. doi: 10.1080/07357907.2018.1439055. [DOI] [PubMed] [Google Scholar]
  • 122.Yao J., Lin J., He L., Huang J., Liu Q. TNF-α/miR-155 axis induces the transformation of osteosarcoma cancer stem cells independent of TP53INP1. Gene. 2020;726:144224. doi: 10.1016/j.gene.2019.144224. [DOI] [PubMed] [Google Scholar]
  • 123.Xu M., Jin H., Xu C.X., Sun B., Song Z.G., Bi W.Z., Wang Y. miR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol. Ther. 2015;23:89–98. doi: 10.1038/mt.2014.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Wu Y., Zhou W., Yang Z., Li J., Jin Y. miR-185-5p represses cells growth and metastasis of osteosarcoma via targeting cathepsin E. Int. J. Toxicol. 2022;41:115–125. doi: 10.1177/10915818211069270. [DOI] [PubMed] [Google Scholar]
  • 125.Waresijiang N., Sun J., Abuduaini R., Jiang T., Zhou W., Yuan H. The downregulation of miR-125a-5p functions as a tumor suppressor by directly targeting MMP-11 in osteosarcoma. Mol. Med. Rep. 2016;13:4859–4864. doi: 10.3892/mmr.2016.5141. [DOI] [PubMed] [Google Scholar]
  • 126.Wang Y., Sun N., Zhang Z., Zhou Y., Liu H., Zhou X., Zhang Y., Zhao Y. Overexpression pattern of miR-301b in osteosarcoma and its relevance with osteosarcoma cellular behaviors via modulating SNX10. Biochem. Genet. 2023;61:87–100. doi: 10.1007/s10528-022-10241-4. [DOI] [PubMed] [Google Scholar]
  • 127.Wang X., Zhang L., Zhang X., Xing C., Liu R., Zhang F. MiR-196a promoted cell migration, invasion and the epithelial-mesenchymal transition by targeting HOXA5 in osteosarcoma. Cancer Biomark. 2020;29:291–298. doi: 10.3233/CBM-201674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Wang X., Li C., Yao W., Tian Z., Liu Z., Ge H. MicroRNA-761 suppresses tumor progression in osteosarcoma via negatively regulating ALDH1B1. Life Sci. 2020;262:118544. doi: 10.1016/j.lfs.2020.118544. [DOI] [PubMed] [Google Scholar]
  • 129.Wang D., Bao F., Teng Y., Li Q., Li J. MicroRNA-506-3p initiates mesenchymal-to-epithelial transition and suppresses autophagy in osteosarcoma cells by directly targeting SPHK1. Biosci. Biotechnol. Biochem. 2019;83:836–844. doi: 10.1080/09168451.2019.1569496. [DOI] [PubMed] [Google Scholar]
  • 130.Sun L., Wang P., Zhang Z., Zhang K., Xu Z., Li S., Mao J. MicroRNA-615 functions as a tumor suppressor in osteosarcoma through the suppression of HK2. Oncol. Lett. 2020;20:226. doi: 10.3892/ol.2020.12089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Sun L., Liu M., Luan S., Shi Y., Wang Q. MicroRNA-744 promotes carcinogenesis in osteosarcoma through targeting LATS2. Oncol. Lett. 2019;18:2523–2529. doi: 10.3892/ol.2019.10530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Shi Y.K., Guo Y.H. MiR-139-5p suppresses osteosarcoma cell growth and invasion through regulating DNMT1. Biochem. Biophys. Res. Commun. 2018;503:459–466. doi: 10.1016/j.bbrc.2018.04.124. [DOI] [PubMed] [Google Scholar]
  • 133.Shen S., Huang K., Wu Y., Ma Y., Wang J., Qin F., Ma J. A miR-135b-TAZ positive feedback loop promotes epithelial-mesenchymal transition (EMT) and tumorigenesis in osteosarcoma. Cancer Lett. 2017;407:32–44. doi: 10.1016/j.canlet.2017.08.005. [DOI] [PubMed] [Google Scholar]
  • 134.Raimondi L., Gallo A., Cuscino N., De Luca A., Costa V., Carina V., Bellavia D., Bulati M., Alessandro R., Fini M., et al. Potential anti-metastatic role of the novel miR-CT3 in tumor angiogenesis and osteosarcoma invasion. Int. J. Mol. Sci. 2022;23:705. doi: 10.3390/ijms23020705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Mo J., Zheng T., Lei L., Dai P., Liu J., He H., Shi J., Chen X., Guo T., Yuan B., et al. MicroRNA-1253 suppresses cell proliferation migration and invasion of osteosarcoma by targeting MMP9. Technol. Cancer Res. Treat. 2021;20:1533033821995278. doi: 10.1177/1533033821995278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Lv S., Guan M. miRNA-1284, a regulator of HMGB1, inhibits cell proliferation and migration in osteosarcoma. Biosci. Rep. 2018;38:BSR20171675. doi: 10.1042/BSR20171675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Liu Y., Zhang J., Xing C., Wei S., Guo N., Wang Y. miR-486 inhibited osteosarcoma cells invasion and epithelial-mesenchymal transition by targeting PIM1. Cancer Biomark. 2018;23:269–277. doi: 10.3233/CBM-181527. [DOI] [PubMed] [Google Scholar]
  • 138.Liu X., Liang Z., Gao K., Li H., Zhao G., Wang S., Fang J. MicroRNA-128 inhibits EMT of human osteosarcoma cells by directly targeting integrin α2. Tumor Biol. 2016;37:7951–7957. doi: 10.1007/s13277-015-4696-0. [DOI] [PubMed] [Google Scholar]
  • 139.Liu W., Wang B., Duan A., Shen K., Zhang Q., Tang X., Wei Y., Tang J., Zhang S. Exosomal transfer of miR-769-5p promotes osteosarcoma proliferation and metastasis by targeting DUSP16. Cancer Cell Int. 2021;21:541. doi: 10.1186/s12935-021-02257-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Liu R., Shen L., Qu N., Zhao X., Wang J., Geng J. MiR-19a promotes migration and invasion by targeting RHOB in osteosarcoma. OncoTargets Ther. 2019;12:7801–7808. doi: 10.2147/OTT.S218047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Li G.W., Yan X. Lower miR-630 expression predicts poor prognosis of osteosarcoma and promotes cell proliferation, migration and invasion by targeting PSMC2. Eur. Rev. Med. Pharmacol. Sci. 2019;23:1915–1925. doi: 10.26355/eurrev_201903_17229. [DOI] [PubMed] [Google Scholar]
  • 142.Jin C., Feng Y., Ni Y., Shan Z. MicroRNA-610 suppresses osteosarcoma oncogenicity via targeting TWIST1 expression. Oncotarget. 2017;8:56174–56184. doi: 10.18632/oncotarget.17045. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 143.Hu Y., Liang D., Chen X., Chen L., Bai J., Li H., Yin C., Zhong W. MiR-671-5p negatively regulates SMAD3 to inhibit migration and invasion of osteosarcoma cells. J. South. Med. Univ. 2021;41:1562–1568. doi: 10.12122/j.issn.1673-4254.2021.10.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.He F., Fang L., Yin Q. miR-363 acts as a tumor suppressor in osteosarcoma cells by inhibiting PDZD2. Oncol. Rep. 2019;41:2729–2738. doi: 10.3892/or.2019.7078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Guo X., Zhang J., Pang J., He S., Li G., Chong Y., Li C., Jiao Z., Zhang S., Shao M. MicroRNA-503 represses epithelial-mesenchymal transition and inhibits metastasis of osteosarcoma by targeting c-myb. Tumor Biol. 2016;37:9181–9187. doi: 10.1007/s13277-016-4797-4. [DOI] [PubMed] [Google Scholar]
  • 146.Guo Q., Zhang N., Liu S., Pang Z., Chen Z. By targeting TRAF6, miR-140-3p inhibits TGF-β1-induced human osteosarcoma epithelial-to-mesenchymal transition, migration, and invasion. Biotechnol. Lett. 2020;42:2123–2133. doi: 10.1007/s10529-020-02943-9. [DOI] [PubMed] [Google Scholar]
  • 147.Gong H.L., Tao Y., Mao X.Z., Song D.Y., You D., Ni J.D. MicroRNA-29a suppresses the invasion and migration of osteosarcoma cells by regulating the SOCS1/NF-κB signalling pathway through negatively targeting DNMT3B. Int. J. Mol. Med. 2019;44:1219–1232. doi: 10.3892/ijmm.2019.4287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Fu Y., Tang Y., Wang J., Guo Z. MicroRNA-181c suppresses the biological progression of osteosarcoma via targeting SMAD7 and regulating transforming growth factor-β (TGF-β) signaling pathway. Med. Sci. Monit. 2019;25:4801–4810. doi: 10.12659/MSM.916939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Feng T., Zhu Z., Jin Y., Wang H., Mao X., Liu D., Li Y., Lu L., Zuo G. The microRNA-708-5p/ZEB1/EMT axis mediates the metastatic potential of osteosarcoma. Oncol. Rep. 2020;43:491–502. doi: 10.3892/or.2019.7452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Duan N., Hu X., Yang X., Cheng H., Zhang W. MicroRNA-370 directly targets FOXM1 to inhibit cell growth and metastasis in osteosarcoma cells. Int. J. Clin. Exp. Pathol. 2015;8:10250–10260. [PMC free article] [PubMed] [Google Scholar]
  • 151.Dong C., Du Q., Wang Z., Wang Y., Wu S., Wang A. MicroRNA-665 suppressed the invasion and metastasis of osteosarcoma by directly inhibiting RAB23. Am. J. Transl. Res. 2016;8:4975–4981. [PMC free article] [PubMed] [Google Scholar]
  • 152.Deng Y., Luan F., Zeng L., Zhang Y., Ma K. MiR-429 suppresses the progression and metastasis of osteosarcoma by targeting ZEB1. Excli J. 2017;16:618–627. doi: 10.17179/excli2017-258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Cheng G., Xu D., Chu K., Cao Z., Sun X., Yang Y. The effects of MiR-214-3p and Irisin/FNDC5 on the biological behavior of osteosarcoma cells. Cancer Biother. Radiopharm. 2020;35:92–100. doi: 10.1089/cbr.2019.2933. [DOI] [PubMed] [Google Scholar]
  • 154.Chen Z., Zhao G., Zhang Y., Ma Y., Ding Y., Xu N. MiR-199b-5p promotes malignant progression of osteosarcoma by regulating HER2. J. Buon. 2018;23:1816–1824. [PubMed] [Google Scholar]
  • 155.Chen J., Yan D., Wu W., Zhu J., Ye W., Shu Q. MicroRNA-130a promotes the metastasis and epithelial-mesenchymal transition of osteosarcoma by targeting PTEN. Oncol. Rep. 2016;35:3285–3292. doi: 10.3892/or.2016.4719. [DOI] [PubMed] [Google Scholar]
  • 156.Cao R., Shao J., Hu Y., Wang L., Li Z., Sun G., Gao X. microRNA-338-3p inhibits proliferation, migration, invasion, and EMT in osteosarcoma cells by targeting activator of 90 kDa heat shock protein ATPase homolog 1. Cancer Cell Int. 2018;18:49. doi: 10.1186/s12935-018-0551-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Cao J., Han X., Qi X., Jin X., Li X. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p. Int. J. Oncol. 2017;51:1115–1123. doi: 10.3892/ijo.2017.4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Cao D., Ge S., Li M. MiR-451a promotes cell growth, migration and EMT in osteosarcoma by regulating YTHDC1-mediated m6A methylation to activate the AKT/mTOR signaling pathway. J. Bone Oncol. 2022;33:100412. doi: 10.1016/j.jbo.2022.100412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Bi W., Yang M., Xing P., Huang T. MicroRNA miR-331-3p suppresses osteosarcoma progression via the Bcl-2/Bax and Wnt/β-catenin signaling pathways and the epithelial-mesenchymal transition by targeting N-acetylglucosaminyltransferase I (MGAT1) Bioengineered. 2022;13:14159–14174. doi: 10.1080/21655979.2022.2083855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Zhu S., Liu Y., Wang X., Wang J., Xi G. lncRNA SNHG10 promotes the proliferation and invasion of osteosarcoma via Wnt/β-catenin signaling. Mol. Ther. Nucleic Acids. 2020;22:957–970. doi: 10.1016/j.omtn.2020.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Zhou Y., Li X., Yang H. LINC00612 functions as a ceRNA for miR-214-5p to promote the proliferation and invasion of osteosarcoma in vitro and in vivo. Exp. Cell Res. 2020;392:112012. doi: 10.1016/j.yexcr.2020.112012. [DOI] [PubMed] [Google Scholar]
  • 162.Zheng Y., Chen Z., Zhou Z., Xu X., Yang H. Silencing of long non-coding RNA LINC00607 prevents tumor proliferation of osteosarcoma by acting as a sponge of miR-607 to downregulate E2F6. Front. Oncol. 2020;10:584452. doi: 10.3389/fonc.2020.584452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Zheng H.L., Yang R.Z., Xu W.N., Liu T., Chen P.B., Zheng X.F., Li B., Jiang L.S., Jiang S.D. Characterization of LncRNA SNHG22 as a protector of NKIRAS2 through miR-4492 binding in osteosarcoma. Aging. 2020;12:18571–18587. doi: 10.18632/aging.103849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Zheng C., Li R., Zheng S., Fang H., Xu M., Zhong L. The knockdown of lncRNA DLGAP1-AS2 suppresses osteosarcoma progression by inhibiting aerobic glycolysis via the miR-451a/HK2 axis. Cancer Sci. 2023;114:4747–4762. doi: 10.1111/cas.15989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Zhao W., Li L. SP1-induced upregulation of long non-coding RNA HCP5 promotes the development of osteosarcoma. Pathol. Res. Prim. 2019;215:439–445. doi: 10.1016/j.prp.2018.12.006. [DOI] [PubMed] [Google Scholar]
  • 166.Zhao H., Wang Y., Hou W., Ding X., Wang W. Long non-coding RNA MALAT1 promotes cell proliferation, migration and invasion by targeting miR-590-3p in osteosarcoma. Exp. Ther. Med. 2022;24:672. doi: 10.3892/etm.2022.11608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Zhang S., Chen R. LINC01140 regulates osteosarcoma proliferation and invasion by targeting the miR-139-5p/HOXA9 axis. Biochem. Biophys. Rep. 2022;31:101301. doi: 10.1016/j.bbrep.2022.101301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Zhang Q., Tang X., Zhou Y., Chen X., Peng K., Jiang R., Liu Z., Song X., Xia H. LINC01060 knockdown inhibits osteosarcoma cell malignant behaviors in vitro and tumor growth and metastasis in vivo through the PI3K/Akt signaling. Cancer Biol. Ther. 2023;24:2198904. doi: 10.1080/15384047.2023.2198904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Zhang L., Song J., Xu X., Sun D., Huang H., Chen Y., Zhang T. Silencing long non-coding RNA linc00689 suppresses the growth and invasion of osteosarcoma cells by targeting miR-129-5p/NUSAP1. Int. J. Exp. Pathol. 2025;106:e12524. doi: 10.1111/iep.12524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Zhang H., Lin J., Chen J., Gu W., Mao Y., Wang H., Zhang Y., Liu W. DDX11-AS1 contributes to osteosarcoma progression via stabilizing DDX11. Life Sci. 2020;254:117392. doi: 10.1016/j.lfs.2020.117392. [DOI] [PubMed] [Google Scholar]
  • 171.Ye K., Wang S., Zhang H., Han H., Ma B., Nan W. Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. J. Cell. Biochem. 2017;118:4772–4781. doi: 10.1002/jcb.26145. [DOI] [PubMed] [Google Scholar]
  • 172.Yao W., Hou J., Liu G., Wu F., Yan Q., Guo L., Wang C. LncRNA CBR3-AS1 promotes osteosarcoma progression through the network of miR-140-5p/DDX54-NUCKS1-mTOR signaling pathway. Mol. Ther. Oncolytics. 2022;25:189–200. doi: 10.1016/j.omto.2022.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Yang W., Shan Z., Zhou X., Peng L., Zhi C., Chai J., Liu H., Yang J., Zhang Z. Knockdown of lncRNA GHET1 inhibits osteosarcoma cells proliferation, invasion, migration and EMT in vitro and in vivo. Cancer Biomark. 2018;23:589–601. doi: 10.3233/CBM-181863. [DOI] [PubMed] [Google Scholar]
  • 174.Yang J., Zou Y., Wu J., Chen B., Luo C., Chen X., Shen H., Luo L. The long noncoding RNA ZEB2-AS1 contributes to proliferation and epithelial-to-mesenchymal transition of osteosarcoma. Cancer Biother. Radiopharm. 2023;38:596–603. doi: 10.1089/cbr.2019.3433. [DOI] [PubMed] [Google Scholar]
  • 175.Xu J., Ding R., Xu Y. Effects of long non-coding RNA SPRY4-IT1 on osteosarcoma cell biological behavior. Am. J. Transl. Res. 2016;8:5330–5337. [PMC free article] [PubMed] [Google Scholar]
  • 176.Xu B., Jin X., Yang T., Zhang Y., Liu S., Wu L., Ying H., Wang Z. Upregulated lncRNA THRIL/TNF-α signals promote cell growth and predict poor clinical outcomes of osteosarcoma. OncoTargets Ther. 2020;13:119–129. doi: 10.2147/OTT.S235798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Xiao X., Liu M., Xie S., Liu C., Huang X., Huang X. Long non-coding HOXA-AS3 contributes to osteosarcoma progression through the miR-1286/TEAD1 axis. J. Orthop. Surg. Res. 2023;18:730. doi: 10.1186/s13018-023-04214-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Wang Y., Zhao Z., Zhang S., Li Z., Li D., Yang S., Zhang H., Zeng X., Liu J. LncRNA FAL1 is a negative prognostic biomarker and exhibits pro-oncogenic function in osteosarcoma. J. Cell. Biochem. 2018;119:8481–8489. doi: 10.1002/jcb.27074. [DOI] [PubMed] [Google Scholar]
  • 179.Wang Y., Zhang R., Cheng G., Xu R., Han X. Long non-coding RNA HOXA-AS2 promotes migration and invasion by acting as a ceRNA of miR-520c-3p in osteosarcoma cells. Cell Cycle. 2018;17:1637–1648. doi: 10.1080/15384101.2018.1489174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Wang L., Zhou J., Zhang Y., Hu T., Sun Y. Long non-coding RNA HCG11 aggravates osteosarcoma carcinogenesis via regulating the microRNA-579/MMP13 axis. Int. J. Gen. Med. 2020;13:1685–1695. doi: 10.2147/IJGM.S274641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Wang L. ELF1-activated FOXD3-AS1 promotes the migration, invasion and EMT of osteosarcoma cells via sponging miR-296-5p to upregulate ZCCHC3. J. Bone Oncol. 2021;26:100335. doi: 10.1016/j.jbo.2020.100335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Wan D., Qu Y., Zhang L., Ai S., Cheng L. The lncRNA LINC00691Functions as a ceRNA for miRNA-1256 to suppress osteosarcoma by regulating the expression of ST5. OncoTargets Ther. 2020;13:13171–13181. doi: 10.2147/OTT.S266435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Tang Y., Ji F. lncRNA HOTTIP facilitates osteosarcoma cell migration, invasion and epithelial-mesenchymal transition by forming a positive feedback loop with c-Myc. Oncol. Lett. 2019;18:1649–1656. doi: 10.3892/ol.2019.10463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Tang N., Chen Y., Su Y., Zhang S., Huang T. The role of disulfidptosis-associated LncRNA-LINC01137 in Osteosarcoma Biology and its regulatory effects on macrophage polarization. Funct. Integr. Genom. 2024;24:219. doi: 10.1007/s10142-024-01504-x. [DOI] [PubMed] [Google Scholar]
  • 185.Sun Y., Jia X., Wang M., Deng Y. Long noncoding RNA MIR31HG abrogates the availability of tumor suppressor microRNA-361 for the growth of osteosarcoma. Cancer Manag. Res. 2019;11:8055–8064. doi: 10.2147/CMAR.S214569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Sun M.X., An H.Y., Sun Y.B., Sun Y.B., Bai B. LncRNA EBLN3P attributes methotrexate resistance in osteosarcoma cells through miR-200a-3p/O-GlcNAc transferase pathway. J. Orthop. Surg. Res. 2022;17:557. doi: 10.1186/s13018-022-03449-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Shi D., Wu F., Mu S., Hu B., Zhong B., Gao F., Qing X., Liu J., Zhang Z., Shao Z. LncRNA AFAP1-AS1 promotes tumorigenesis and epithelial-mesenchymal transition of osteosarcoma through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway. J. Exp. Clin. Cancer Res. 2019;38:375. doi: 10.1186/s13046-019-1363-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Saraswat S.K., Mahmood B.S., Ajila F., Kareem D.S., Alwan M., Athab Z.H., Shaier J.B., Hosseinifard S.R. Deciphering the oncogenic landscape: Unveiling the molecular machinery and clinical significance of LncRNA TMPO-AS1 in human cancers. Pathol. Res. Prim. 2024;255:155190. doi: 10.1016/j.prp.2024.155190. [DOI] [PubMed] [Google Scholar]
  • 189.Ning Y., Bai Z. DSCAM-AS1 accelerates cell proliferation and migration in osteosarcoma through miR-186-5p/GPRC5A signaling. Cancer Biomark. 2021;30:29–39. doi: 10.3233/CBM-190703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Meng X., Zhang Z., Chen L., Wang X., Zhang Q., Liu S. Silencing of the long non-coding RNA TTN-AS1 attenuates the malignant progression of osteosarcoma cells by regulating the miR-16-1-3p/TFAP4 axis. Front. Oncol. 2021;11:652835. doi: 10.3389/fonc.2021.652835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Ma H.Z., Wang J., Shi J., Zhang W., Zhou D.S. LncRNA LINC00467 contributes to osteosarcoma growth and metastasis through regulating HMGA1 by directly targeting miR-217. Eur. Rev. Med. Pharmacol. Sci. 2020;24:5933–5945. doi: 10.26355/eurrev_202006_21486. [DOI] [PubMed] [Google Scholar]
  • 192.Ma H., Su R., Feng H., Guo Y., Su G. Long noncoding RNA UCA1 promotes osteosarcoma metastasis through CREB1-mediated epithelial-mesenchymal transition and activating PI3K/AKT/mTOR pathway. J. Bone Oncol. 2019;16:100228. doi: 10.1016/j.jbo.2019.100228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Luo Y., Tao H., Jin L., Xiang W., Guo W. CDKN2B-AS1 exerts oncogenic role in osteosarcoma by promoting cell proliferation and epithelial to mesenchymal transition. Cancer Biother. Radiopharm. 2020;35:58–65. doi: 10.1089/cbr.2019.2885. [DOI] [PubMed] [Google Scholar]
  • 194.Liu Y., Zhang Y., Zhang J., Ma J., Xu X., Wang Y., Zhou Z., Jiang D., Shen S., Ding Y., et al. Silencing of HuR inhibits osteosarcoma cell epithelial-mesenchymal transition via AGO2 in association with long non-coding RNA XIST. Front. Oncol. 2021;11:601982. doi: 10.3389/fonc.2021.601982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Liu X., Wang M., Zhang L., Huang L. LncRNA ZFAS1 contributes to osteosarcoma progression via miR-520b and miR-520e-mediated inhibition of RHOC signaling. Clinics. 2023;78:100143. doi: 10.1016/j.clinsp.2022.100143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Liu X., Wang H., Tao G.L., Chu T.B., Wang Y.X., Liu L. LncRNA-TMPO-AS1 promotes apoptosis of osteosarcoma cells by targeting miR-329 and regulating E2F1. Eur. Rev. Med. Pharmacol. Sci. 2020;24:11006–11015. doi: 10.26355/eurrev_202011_23585. [DOI] [PubMed] [Google Scholar]
  • 197.Liu W., Zhang Q., Shen K., Li K., Chang J., Li H., Duan A., Zhang S., Huang Y. Long noncoding RNA LINC00909 induces epithelial-mesenchymal transition and contributes to osteosarcoma tumorigenesis and metastasis. J. Oncol. 2022;2022:8660965. doi: 10.1155/2022/8660965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Liu L., Zheng M., Wang X., Gao Y., Gu Q. LncRNA NR_136400 suppresses cell proliferation and invasion by acting as a ceRNA of TUSC5 that is modulated by miR-8081 in Osteosarcoma. Front. Pharmacol. 2020;11:641. doi: 10.3389/fphar.2020.00641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Li Z., Tang Y., Xing W., Dong W., Wang Z. LncRNA, CRNDE promotes osteosarcoma cell proliferation, invasion and migration by regulating Notch1 signaling and epithelial-mesenchymal transition. Exp. Mol. Pathol. 2018;104:19–25. doi: 10.1016/j.yexmp.2017.12.002. [DOI] [PubMed] [Google Scholar]
  • 200.Li J., Zhang Y., Sun F., Zhang G., Pan X.A., Zhou Q. Long noncoding RNA PCGEM1 facilitates tumor growth and metastasis of osteosarcoma by sponging miR-433-3p and targeting OMA1. Orthop. Surg. 2023;15:1060–1071. doi: 10.1111/os.13648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Li J., Yuan X., Ma C., Li J., Qu G., Yu B., Cai F., Peng Y., Liu L., Zeng D., et al. LncRNA LBX2-AS1 impacts osteosarcoma sensitivity to JQ-1 by sequestering miR-597-3p away from BRD4. Front. Oncol. 2023;13:1139588. doi: 10.3389/fonc.2023.1139588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Li H., Fu S., Wang W. Long non-coding RNA HOTAIR promotes human osteosarcoma proliferation, migration through activation of the Wnt/b-catenin signaling pathway. J. Oncol. 2023;2023:9667920. doi: 10.1155/2023/9667920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Li B., Ren P., Wang Z. Long non-coding RNA Ftx promotes osteosarcoma progression via the epithelial to mesenchymal transition mechanism and is associated with poor prognosis in patients with osteosarcoma. Int. J. Clin. Exp. Pathol. 2018;11:4503–4511. [PMC free article] [PubMed] [Google Scholar]
  • 204.Jiang Z., Jiang C., Fang J. Up-regulated lnc-SNHG1 contributes to osteosarcoma progression through sequestration of miR-577 and activation of WNT2B/Wnt/β-catenin pathway. Biochem. Biophys. Res. Commun. 2018;495:238–245. doi: 10.1016/j.bbrc.2017.11.012. [DOI] [PubMed] [Google Scholar]
  • 205.Jiang Y., Luo Y. LINC01354 promotes osteosarcoma cell invasion by up-regulating integrin β1. Arch. Med. Res. 2020;51:115–123. doi: 10.1016/j.arcmed.2019.12.016. [DOI] [PubMed] [Google Scholar]
  • 206.Jiang R., Zhang Z., Zhong Z., Zhang C. Long-non-coding RNA RUSC1-AS1 accelerates osteosarcoma development by miR-101-3p-mediated Notch1 signalling pathway. J. Bone Oncol. 2021;30:100382. doi: 10.1016/j.jbo.2021.100382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Han G., Guo Q., Ma N., Bi W., Xu M., Jia J., Wang W. LncRNA BCRT1 facilitates osteosarcoma progression via regulating miR-1303/FGF7 axis. Aging. 2021;13:15501–15510. doi: 10.18632/aging.203106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Gui D., Cao H. Long non-coding RNA CDKN2B-AS1 promotes osteosarcoma by increasing the expression of MAP3K3 via sponging miR-4458. In Vitro Cell. Dev. Biol. Anim. 2020;56:24–33. doi: 10.1007/s11626-019-00415-7. [DOI] [PubMed] [Google Scholar]
  • 209.Gu Z., Wu S., Wang J., Zhao S. Long non-coding RNA LINC01419 mediates miR-519a-3p/PDRG1 axis to promote cell progression in osteosarcoma. Cancer Cell Int. 2020;20:147. doi: 10.1186/s12935-020-01203-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Gao S., Guo J., Li F., Zhang K., Zhang Y., Zhang Y., Guo Y. Long non-coding RNA lncTCF7 predicts poor prognosis and promotes tumor metastasis in osteosarcoma. Int. J. Clin. Exp. Pathol. 2017;10:10918–10925. [PMC free article] [PubMed] [Google Scholar]
  • 211.Ding Q., Mo F., Cai X., Zhang W., Wang J., Yang S., Liu X. LncRNA CRNDE is activated by SP1 and promotes osteosarcoma proliferation, invasion, and epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway. J. Cell. Biochem. 2020;121:3358–3371. doi: 10.1002/jcb.29607. [DOI] [PubMed] [Google Scholar]
  • 212.Deng Y., Zhao F., Zhang Z., Sun F., Wang M. Long noncoding RNA SNHG7 promotes the tumor growth and epithelial-to-mesenchymal transition via regulation of miR-34a signals in osteosarcoma. Cancer Biother. Radiopharm. 2018;33:365–372. doi: 10.1089/cbr.2018.2503. [DOI] [PubMed] [Google Scholar]
  • 213.Cai L., Lv J., Zhang Y., Li J., Wang Y., Yang H. The lncRNA HNF1A-AS1 is a negative prognostic factor and promotes tumorigenesis in osteosarcoma. J. Cell. Mol. Med. 2017;21:2654–2662. doi: 10.1111/jcmm.12944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Cai F., Liu L., Bo Y., Yan W., Tao X., Peng Y., Zhang Z., Liao Q., Yi Y. LncRNA RPARP-AS1 promotes the progression of osteosarcoma cells through regulating lipid metabolism. BMC Cancer. 2024;24:166. doi: 10.1186/s12885-024-11901-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Bu J., Guo R., Xu X.Z., Luo Y., Liu J.F. LncRNA SNHG16 promotes epithelial-mesenchymal transition by upregulating ITGA6 through miR-488 inhibition in osteosarcoma. J. Bone Oncol. 2021;27:100348. doi: 10.1016/j.jbo.2021.100348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Bai J., Zhang X., Jiang F., Shan H., Gao X., Bo L., Zhang Y. A feedback loop of LINC00665 and the Wnt signaling pathway expedites osteosarcoma cell proliferation, invasion, and epithelial-mesenchymal transition. Orthop. Surg. 2023;15:286–300. doi: 10.1111/os.13532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Zhang H., Zhou Q., Shen W. Circ-FOXM1 promotes the proliferation, migration and EMT process of osteosarcoma cells through FOXM1-mediated Wnt pathway activation. J. Orthop. Surg. Res. 2022;17:344. doi: 10.1186/s13018-022-03207-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Yu Y., Li H., Wu C., Li J. Circ_0021087 acts as a miR-184 sponge and represses gastric cancer progression by adsorbing miR-184 and elevating FOSB expression. Eur. J. Clin. Investig. 2021;51:e13605. doi: 10.1111/eci.13605. [DOI] [PubMed] [Google Scholar]
  • 219.Yang J., Hu Z., Ru X., He M., Hu Z., Qin X., Xiao S., Liu D., Huang H., Wei Q. Hsa_circ_0002005 aggravates osteosarcoma by increasing cell proliferation, migration, and invasion. Gene. 2025;942:149221. doi: 10.1016/j.gene.2025.149221. [DOI] [PubMed] [Google Scholar]
  • 220.Xu B., Yang T., Wang Z., Zhang Y., Liu S., Shen M. CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value. Cancer Manag. Res. 2018;10:4871–4880. doi: 10.2147/CMAR.S178213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Wu H., Li W., Zhu S., Zhang D., Zhang M. Circular RNA circUBAP2 regulates proliferation and invasion of osteosarcoma cells through miR-641/YAP1 axis. Cancer Cell Int. 2020;20:223. doi: 10.1186/s12935-020-01318-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Wang Z., Deng M., Chen L., Wang W., Liu G., Liu D., Han Z., Zhou Y. Circular RNA Circ-03955 Promotes Epithelial-Mesenchymal Transition in Osteosarcoma by Regulating miR-3662/Metadherin Pathway. Front. Oncol. 2020;10:545460. doi: 10.3389/fonc.2020.545460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Liu W., Long Q., Zhang W., Zeng D., Hu B., Liu S., Li C. Circular RNA expression profile identifies circMGEA5 as a novel metastasis-promoting factor and potential biomarker in osteosarcoma. J. Biochem. Mol. Toxicol. 2023;37:e23286. doi: 10.1002/jbt.23286. [DOI] [PubMed] [Google Scholar]
  • 224.Gao Y., Ma H., Gao Y., Tao K., Fu L., Ren R., Hu X., Kou M., Chen B., Shi J., et al. CircRNA Circ_0001721 promotes the progression of osteosarcoma through miR-372-3p/MAPK7 axis. Cancer Manag. Res. 2020;12:8287–8302. doi: 10.2147/CMAR.S244527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Feng Z.H., Zheng L., Yao T., Tao S.Y., Wei X.A., Zheng Z.Y., Zheng B.J., Zhang X.Y., Huang B., Liu J.H., et al. EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis. 2021;12:1025. doi: 10.1038/s41419-021-04339-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Chen Q., Zhou H., Rong W. Circular RNA_0078767 upregulates Kruppel-like factor 9 expression by targeting microRNA-889, thereby inhibiting the progression of osteosarcoma. Bioengineered. 2022;13:14313–14328. doi: 10.1080/21655979.2022.2084257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Chen J., Liu G., Wu Y., Ma J., Wu H., Xie Z., Chen S., Yang Y., Wang S., Shen P., et al. CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling. Mol. Cancer. 2019;18:150. doi: 10.1186/s12943-019-1076-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.


Articles from Cancers are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES