Full text
PDF![242](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/dc0bd3a7f28b/biochemj00809-0021.png)
![243](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/81eed4259580/biochemj00809-0022.png)
![244](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/dc82468fd481/biochemj00809-0023.png)
![245](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/3661b920d81f/biochemj00809-0024.png)
![246](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/fd8651b340e8/biochemj00809-0025.png)
![247](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/0ae216e8122a/biochemj00809-0026.png)
![248](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/7a846f3ccef6/biochemj00809-0027.png)
![249](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/fdb99aaeef9c/biochemj00809-0028.png)
![250](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83db/1243329/31eb2e672a5c/biochemj00809-0029.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- GRISEBACH H., OLLIS W. D. Biogenetic relationships between coumarins, flavonoids, isoflavonoids, and rotenoids. Experientia. 1961 Jan 15;17:4–12. doi: 10.1007/BF02157921. [DOI] [PubMed] [Google Scholar]
- HARBORNE J. B., CORNER J. J. The cinnamic esters of Antirrhinum majus flowers. Arch Biochem Biophys. 1961 Jan;92:192–193. doi: 10.1016/0003-9861(61)90236-3. [DOI] [PubMed] [Google Scholar]
- HARBORNE J. B. Plant polyphenols. 2. The coumarins of Solanum pinnatisectum. Biochem J. 1960 Feb;74:270–273. doi: 10.1042/bj0740270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARBORNE J. B. Plant polyphenols. I. Anthocyanin production in the cultivated potato. Biochem J. 1960 Feb;74:262–269. doi: 10.1042/bj0740262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARBORNE J. B., SHERRATT H. S. Plant polyphenols. 3. Flavonoids in genotypes of Primula sinensis. Biochem J. 1961 Feb;78:298–306. doi: 10.1042/bj0780298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERRMANN K. Uber Oxyzimtsäuren mit Ausnahme der Kaffeesäure und der Chlorogensäuren. Pharmazie. 1958 May;13(5):266–276. [PubMed] [Google Scholar]
- KOSUGE T., CONN E. E. The metabolism of aromatic compounds in higher plants. I. Coumarin and o-coumaric acid. J Biol Chem. 1959 Aug;234(8):2133–2137. [PubMed] [Google Scholar]
- LEVY C. C., ZUCKER M. Cinnamyl and p-coumaryl esters as intermediates in the biosynthesis of chlorogenic acid. J Biol Chem. 1960 Aug;235:2418–2425. [PubMed] [Google Scholar]
- McCALLA D. R., NEISH A. C. Metabolism of phenylpropanoid compounds in Salvia. II. Biosynthesis of phenolic cinnamic acids. Can J Biochem Physiol. 1959 Apr;37(4):537–547. [PubMed] [Google Scholar]
- RABIN R. S., KLEIN R. M. Chlorogenic acid as a competitive inhibitor of indoleacetic acid oxidase. Arch Biochem Biophys. 1957 Jul;70(1):11–15. doi: 10.1016/0003-9861(57)90074-7. [DOI] [PubMed] [Google Scholar]
- SONDHEIMER E. On the distribution of caffeic acid and the chlorogenic acid isomers in plants. Arch Biochem Biophys. 1958 Mar;74(1):131–138. doi: 10.1016/0003-9861(58)90207-8. [DOI] [PubMed] [Google Scholar]
- Schwimmer S., Bevenue A. Reagent for Differentiation of 1,4- and 1,6-Linked Glucosaccharides. Science. 1956 Mar 30;123(3196):543–544. doi: 10.1126/science.123.3196.543. [DOI] [PubMed] [Google Scholar]
- YAMAHA T., CARDINI C. E. The biosynthesis of plant glycosides. I. Monoglucosides. Arch Biochem Biophys. 1960 Jan;86:127–132. doi: 10.1016/0003-9861(60)90379-9. [DOI] [PubMed] [Google Scholar]