Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981;319:325–343. doi: 10.1113/jphysiol.1981.sp013911

The release of rat intestinal cholecystokinin after oral trypsin inhibitor measured by bio-assay.

S J Brand, R G Morgan
PMCID: PMC1243841  PMID: 7320918

Abstract

The distribution, molecular form and release of cholecystokinin (CCK)-like activity in extracts of rat small intestine was studied with an in vitro gall-bladder bio-assay. In contrast to the reported heterogeneity of CCK-like immunoreactivity in the intestine, only a single molecular form of CCK-like activity was detected using the bio-assay. 2. The CCK-like activity eluted from Sephadex G50 with a Kav of 0.69, after the triacontriapeptide of cholecystokinin (CCK33) and before cholecystokinin octapeptide 2500, may represent the 22 amino acid peptide of CCK (CCK22). The bio-assay peak of CCK-like activity had pancreozymin activity and CCK/gastrin C terminal immunoreactivity. The CCK-like activity weas readily extracted from the small intestine at neutral pH, but subsequent treatment with cold 0.5 M-acetic acid extracted further CCK-like activity of the same molecular form as that recovered under neutral conditions. 3. The bio-assay detected no CCK-like activity, nor was pancreozymin-like activity found in fractions corresponding to CCK33 or CCK8 after Sephadex G50 chromatography of rat intestinal extracts. 4. Oral trypsin inhibitor was a potent stimulus for the release of CCK-like activity from the upper small intestine of the rat. After oral trypsin inhibitor release, CCK-like activity was rapidly resynthesized.

Full text

PDF
341

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amer M. S. Studies with cholecystokinin in vitro. 3. Mechanism of the effect on the isolated rabbit gall bladder strips. J Pharmacol Exp Ther. 1972 Dec;183(3):527–534. [PubMed] [Google Scholar]
  2. Amer M. S. Studies with cholecystokinin. II. Cholecystokinetic potency of porcine gastrins I and II and related peptides in three systems. Endocrinology. 1969 May;84(5):1277–1281. doi: 10.1210/endo-84-5-1277. [DOI] [PubMed] [Google Scholar]
  3. Berry H., Flower R. J. The assay of endogenous cholecystokinin and factors influencing its release in the dog and cat. Gastroenterology. 1971 Mar;60(3):409–420. [PubMed] [Google Scholar]
  4. DAHLQVIST A. A method for the determination of amylase in intestinal content. Scand J Clin Lab Invest. 1962;14:145–151. doi: 10.3109/00365516209079686. [DOI] [PubMed] [Google Scholar]
  5. Dockray G. J. Cholecystokinins in rat cerebral cortex: identification, purification and characterization by immunochemical methods. Brain Res. 1980 Apr 21;188(1):155–165. doi: 10.1016/0006-8993(80)90564-8. [DOI] [PubMed] [Google Scholar]
  6. Dockray G. J. Immunoreactive component resembling cholecystokinin octapeptide in intestine. Nature. 1977 Nov 24;270(5635):359–361. doi: 10.1038/270359a0. [DOI] [PubMed] [Google Scholar]
  7. Dockray G. J. The action of scretin, cholecystokinin-pancreozymin and caerulein on pancreatic secretion in the rat. J Physiol. 1972 Sep;225(3):679–692. doi: 10.1113/jphysiol.1972.sp009963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goltermann N. R., Rehfeld J. F., Roigaard-Petersen H. In vivo biosynthesis of cholecystokinin in rat cerebral cortex. J Biol Chem. 1980 Jul 10;255(13):6181–6185. [PubMed] [Google Scholar]
  9. Green G. M., Lyman R. L. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor-induced hypersecretion in rats. Proc Soc Exp Biol Med. 1972 May;140(1):6–12. doi: 10.3181/00379727-140-36384. [DOI] [PubMed] [Google Scholar]
  10. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  11. Hansky J., Ho P. Cholecystokinin-like peptides in brain and intestine of obese-hyperglycaemic mice. Aust J Exp Biol Med Sci. 1979 Dec;57(6):575–579. doi: 10.1038/icb.1979.59. [DOI] [PubMed] [Google Scholar]
  12. Johnson A. G., McDermott S. J. Sensitive bioassay of cholecystokinin in human serum. Lancet. 1973 Sep 15;2(7829):589–591. doi: 10.1016/s0140-6736(73)92416-1. [DOI] [PubMed] [Google Scholar]
  13. Khayambashi H., Lyman R. L. Secretion of rat pancreas perfused with plasma from rats fed soybean trypsin inhibitor. Am J Physiol. 1969 Sep;217(3):646–651. doi: 10.1152/ajplegacy.1969.217.3.646. [DOI] [PubMed] [Google Scholar]
  14. Larsson L. I., Håkanson R., Rehfeld J. F., Stadil F., Sundler F. Occurrence and neonatal development of gastrin immunoreactivity in the digestive tract of the rat. Cell Tissue Res. 1974;149(2):275–281. doi: 10.1007/BF00222279. [DOI] [PubMed] [Google Scholar]
  15. Larsson L. I., Rehfeld J. F. Characterization of antral gastrin cells with region-specific antisera. J Histochem Cytochem. 1977 Dec;25(12):1317–1321. doi: 10.1177/25.12.925341. [DOI] [PubMed] [Google Scholar]
  16. Ondetti M. A., Rubin B., Engel S. L., Pluscec J., Sheehan J. T. Cholecystokinin-pancreozymin: recent developments. Am J Dig Dis. 1970 Feb;15(2):149–156. doi: 10.1007/BF02235646. [DOI] [PubMed] [Google Scholar]
  17. Preiser H., Schmitz J., Maestracci D., Crane R. K. Modification of an assay for trypsin and its application for the estimation of enteropeptidase. Clin Chim Acta. 1975 Mar 10;59(2):169–175. doi: 10.1016/0009-8981(75)90025-x. [DOI] [PubMed] [Google Scholar]
  18. Rehfeld J. F. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem. 1978 Jun 10;253(11):4022–4030. [PubMed] [Google Scholar]
  19. Rehfeld J. F. Radioimmunoassay in diagnosis, localization and treatment of endocrine tumours in gut and pancreas. Scand J Gastroenterol Suppl. 1979;53:33–38. [PubMed] [Google Scholar]
  20. Ryan J. P., Ryave S. Efffect of vasoactive intestinal polypeptide on gallbladder smooth muscle in vitro. Am J Physiol. 1978 Jan;234(1):E44–E46. doi: 10.1152/ajpendo.1978.234.1.E44. [DOI] [PubMed] [Google Scholar]
  21. Ryan J., Cohen S. Interaction of gastrin I, secretin, and cholecystokinin on gallbladder smooth muscle. Am J Physiol. 1976 Mar;230(3):553–556. doi: 10.1152/ajplegacy.1976.230.3.553. [DOI] [PubMed] [Google Scholar]
  22. Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
  23. Strunz U., Domschke W., Mitznegg P., Domschke S., Schubert E., Wünsch E., Jaeger E., Demling L. Analysis of the motor effects of 13-norleucine motilin on the rabbit, guinea pig, rat, and human alimentary tract in vitro. Gastroenterology. 1975 Jun;68(6):1485–1491. [PubMed] [Google Scholar]
  24. Vagne M., Grossman M. I. Cholecystokinetic potency of gastrointestinal hormones and related peptides. Am J Physiol. 1968 Oct;215(4):881–884. doi: 10.1152/ajplegacy.1968.215.4.881. [DOI] [PubMed] [Google Scholar]
  25. Walsh J. H., Wong H. C., Dockray G. J. Bombesin-like peptides in mammals. Fed Proc. 1979 Aug;38(9):2315–2319. [PubMed] [Google Scholar]
  26. Zetler G. Antagonism of cholecystokinin-like peptides by opioid peptides, morphine or tetrodotoxin. Eur J Pharmacol. 1979 Nov 23;60(1):67–77. doi: 10.1016/0014-2999(79)90053-0. [DOI] [PubMed] [Google Scholar]
  27. Zetler G., Cannon D., Powell D., Skrabanek P., Vanderhaeghen J. J. Crude substance P from brain contains a cholecystokinin-like peptide. Naunyn Schmiedebergs Arch Pharmacol. 1978 Nov;305(2):189–190. doi: 10.1007/BF00508292. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES