Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Aug;317:67–90. doi: 10.1113/jphysiol.1981.sp013814

Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells.

G M Burgess, M Claret, D H Jenkinson
PMCID: PMC1246778  PMID: 6273550

Abstract

1. K-sensitive electrodes placed in the extracellular fluid have been used to show that ATP and noradrenaline cause a rapid loss of up to 10% of the K content of isolated guinea-pig hepatocytes. 2. The hypothesis tha this response is a consequence of a rise in the K permeability of the hepatocyte membrane triggered by an increase in cytosolic Ca is supported by the finding that the divalent cation ionophore A23187 also initiated K loss, in this instance of up to 20-25% of the amount in the cells. 3. Under similar conditions A23187 caused a transient increase, followed by a larger decrease, in the 45Ca content of guinea-pig hepatocytes equilibrated with this isotope. The decrease alone was seen with ATP and noradrenaline. 4. Quinine (1 mM) and the bee venom neurotoxin apamin (10 nM) greatly reduced the effect of ATP, noradrenaline and A23187 on K content without affecting the changes in 45Ca movement. 5. Apamin (10 nM) also abolished the increase in 42K efflux which follows the application of the alpha-adrenoceptor agonist amidephrine to rabbit liver slices; the concurrent rises in 45Ca efflux and glucose release were unaffected. 6. It was concluded that quinine and apamin are able to block either the Ca-dependent K channels present in guinea-pig and rabbit liver cell membranes or the mechanism that controls them. 7. Surprisingly, rat hepatocytes took up rather than lost K when treated with the concentrations of ATP, noradrenaline or A23187 that initiated K loss from guinea-pig cells. This response was greatly reduced by ouabain. 8. Application of large concentrations of A23187 to rat hepatocytes caused K loss associated with cell death. 9. The influence of apamin (10-1000 nM) and quinine (200-1000 micro M) on the Ca-dependent K permeability of red blood cells and ghosts was also studied. Apamin was without effect even when applied to both sides of the ghost membrane, whereas quinine caused inhibition, as reported by others. 10. The results suggest that Ca-dependent K channels or carriers are present in the membranes of liver cells of the guinea-pig and rabbit, but are either lacking or inactive in rat liver. The finding that apamin blocks this mechanism in hepatocytes but not in erythrocytes may mean that the channels differ in these cells.

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed Z., Connor J. A. Intracellular pH changes induced by calcium influx during electrical activity in molluscan neurons. J Gen Physiol. 1980 Apr;75(4):403–426. doi: 10.1085/jgp.75.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armando-Hardy M., Ellory J. C., Ferreira H. G., Fleminger S., Lew V. L. Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine. J Physiol. 1975 Aug;250(1):32P–33P. [PubMed] [Google Scholar]
  3. Atwater I., Dawson C. M., Ribalet B., Rojas E. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J Physiol. 1979 Mar;288:575–588. [PMC free article] [PubMed] [Google Scholar]
  4. Baidan L. V., Vladimirova I. A., Miroshnikov A. I., Taran G. A. Deistvie apamina na sinapticheskuiu peredachu v razlichnykh tipakh sinapsov. Dokl Akad Nauk SSSR. 1978 Aug 11;241(5):1224–1227. [PubMed] [Google Scholar]
  5. Band D. M., Kratochvil J., Treasure T. An ion selective electrode for the determination of potassium [proceedings]. J Physiol. 1977 Feb;265(1):5P–6P. [PubMed] [Google Scholar]
  6. Batzri S., Selinger Z., Schramm M., Robinovitch M. R. Potassium release mediated by the epinephrine -receptor in rat parotid slices. Properties and relation to enzyme secretion. J Biol Chem. 1973 Jan 10;248(1):361–368. [PubMed] [Google Scholar]
  7. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blackmore P. F., Brumley F. T., Marks J. L., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Relationship between alpha-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells. J Biol Chem. 1978 Jul 25;253(14):4851–4858. [PubMed] [Google Scholar]
  9. Blackmore P. F., Dehaye J. P., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in alpha-adrenergic activation of phosphorylase in perfused rat liver. J Biol Chem. 1979 Aug 10;254(15):6945–6950. [PubMed] [Google Scholar]
  10. Burgess G. M., Claret M., Jenkinson D. H. Effects of catecholamines, ATP and ionophore A23187 on potassium and calcium movements in isolated hepatocytes. Nature. 1979 Jun 7;279(5713):544–546. doi: 10.1038/279544a0. [DOI] [PubMed] [Google Scholar]
  11. CRAIG A. B., Jr Observations on epinephrine and glucagon-induced glycogenolysis and potassium loss in the isolated perfused frog liver. Am J Physiol. 1958 May;193(2):425–430. doi: 10.1152/ajplegacy.1958.193.2.425. [DOI] [PubMed] [Google Scholar]
  12. Callewaert G. L., Shipolini R., Vernon C. A. The disulphide bridges of apamin. FEBS Lett. 1968 Aug;1(2):111–113. doi: 10.1016/0014-5793(68)80033-x. [DOI] [PubMed] [Google Scholar]
  13. Chen J. L., Babcock D. F., Lardy H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1978 May;75(5):2234–2238. doi: 10.1073/pnas.75.5.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  15. Claret-Berthon B., Claret M., Mazet J. L. Fluxes and distribution of calcium in rat liver cells: kinetic analysis and identification of pools. J Physiol. 1977 Nov;272(3):529–552. doi: 10.1113/jphysiol.1977.sp012058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Desaiah D., Ho I. K. Kinetics of catecholamine sensitive Na+-K+ ATPase activity in mouse brain synaptosomes. Biochem Pharmacol. 1977 Nov 1;26(21):2029–2035. doi: 10.1016/0006-2952(77)90012-0. [DOI] [PubMed] [Google Scholar]
  17. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  18. Egashira K. Biphasic response to noradrenaline in the guinea pig liver cells. Jpn J Physiol. 1980;30(1):81–91. doi: 10.2170/jjphysiol.30.81. [DOI] [PubMed] [Google Scholar]
  19. Exton J. H. Mechanisms involved in alpha-adrenergic phenomena: role of calcium ions in actions of catecholamines in liver and other tissues. Am J Physiol. 1980 Jan;238(1):E3–12. doi: 10.1152/ajpendo.1980.238.1.E3. [DOI] [PubMed] [Google Scholar]
  20. Ferreira H. G., Lew V. L. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature. 1976 Jan 1;259(5538):47–49. doi: 10.1038/259047a0. [DOI] [PubMed] [Google Scholar]
  21. GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta. 1958 Dec;30(3):653–654. doi: 10.1016/0006-3002(58)90124-0. [DOI] [PubMed] [Google Scholar]
  22. Graf J., Petersen O. H. Cell membrane potential and resistance in liver. J Physiol. 1978 Nov;284:105–126. doi: 10.1113/jphysiol.1978.sp012530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Habermann E. Bee and wasp venoms. Science. 1972 Jul 28;177(4046):314–322. doi: 10.1126/science.177.4046.314. [DOI] [PubMed] [Google Scholar]
  24. Hanani M., Shaw C. A potassium contribution to the response of the barnacle photoreceptor. J Physiol. 1977 Aug;270(1):151–163. doi: 10.1113/jphysiol.1977.sp011943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Haylett D. G. Effects of sympathomimetic amines on 45Ca efflux from liver slices. Br J Pharmacol. 1976 May;57(1):158–160. doi: 10.1111/j.1476-5381.1976.tb07668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Haylett D. G., Jenkinson D. H. Effects of noradrenaline on potassium reflux, membrane potential and electrolyte levels in tissue slices prepared from guinea-pig liver. J Physiol. 1972 Sep;225(3):721–750. doi: 10.1113/jphysiol.1972.sp009966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Haylett D. G., Jenkinson D. H. Proceedings: Effects of sympathomimetic amines and ouabain on potassium influx in guinea-pig liver slices. J Physiol. 1976 Jul;259(1):30P–31P. [PubMed] [Google Scholar]
  28. Haylett D. G., Jenkinson D. H. The receptors concerned in the actions of catecholamines on glucose release, membrane potential and ion movements in guinea-pig liver. J Physiol. 1972 Sep;225(3):751–772. doi: 10.1113/jphysiol.1972.sp009967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hems D. A., Whitton P. D. Control of hepatic glycogenolysis. Physiol Rev. 1980 Jan;60(1):1–50. doi: 10.1152/physrev.1980.60.1.1. [DOI] [PubMed] [Google Scholar]
  30. Hexum T. D. The effect of catecholamines on transport (Na,K) adenosine triphosphatase. Biochem Pharmacol. 1977 Jul 1;26(13):1221–1227. doi: 10.1016/0006-2952(77)90109-5. [DOI] [PubMed] [Google Scholar]
  31. Howard R. B., Pesch L. A. Respiratory activity of intact, isolated parenchymal cells from rat liver. J Biol Chem. 1968 Jun 10;243(11):3105–3109. [PubMed] [Google Scholar]
  32. Jakob A., Diem S. Metabolic responses of perfused rat livers to alpha- and beta-adrenergic agonists, glucagon and cyclic AMP. Biochim Biophys Acta. 1975 Sep 8;404(1):57–66. doi: 10.1016/0304-4165(75)90147-6. [DOI] [PubMed] [Google Scholar]
  33. Klee C. B., Crouch T. H., Richman P. G. Calmodulin. Annu Rev Biochem. 1980;49:489–515. doi: 10.1146/annurev.bi.49.070180.002421. [DOI] [PubMed] [Google Scholar]
  34. Lew V. L., Ferreira H. G. Variable Ca sensitivity of a K-selective channel in intact red-cell membranes. Nature. 1976 Sep 23;263(5575):336–338. doi: 10.1038/263336a0. [DOI] [PubMed] [Google Scholar]
  35. Maas A. J., Den Hertog A. The effect of apamin on the smooth muscle cells of the guinea-pig taenia coli. Eur J Pharmacol. 1979 Sep 15;58(2):151–156. doi: 10.1016/0014-2999(79)90006-2. [DOI] [PubMed] [Google Scholar]
  36. Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
  37. Mecca T. E., Elam J. T., Nash C. B., Caldwell R. W. alpha-Adrenergic blocking properties of quinine HCl. Eur J Pharmacol. 1980 May 2;63(2-3):159–166. doi: 10.1016/0014-2999(80)90439-2. [DOI] [PubMed] [Google Scholar]
  38. Meech R. W. Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng. 1978;7:1–18. doi: 10.1146/annurev.bb.07.060178.000245. [DOI] [PubMed] [Google Scholar]
  39. Muller M. J., Baer H. P. Apamin, a nonspecific antagonist of smooth muscle relaxants. Naunyn Schmiedebergs Arch Pharmacol. 1980 Feb;311(1):105–107. doi: 10.1007/BF00500310. [DOI] [PubMed] [Google Scholar]
  40. Poggioli J., Berthon B., Claret M. Calcium movements in in situ mitochondria following activation of alpha-adrenergic receptors in rat liver cells. FEBS Lett. 1980 Jun 30;115(2):243–246. doi: 10.1016/0014-5793(80)81178-1. [DOI] [PubMed] [Google Scholar]
  41. Putney J. W., Jr Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev. 1978 Jun;30(2):209–245. [PubMed] [Google Scholar]
  42. Saggerson E. D., Carpenter C. A. Ouabain and K+ removal blocks alpha-adrenergic stimulation of gluconeogenesis in tubule fragments from fed rats. FEBS Lett. 1979 Oct 1;106(1):189–192. doi: 10.1016/0014-5793(79)80725-5. [DOI] [PubMed] [Google Scholar]
  43. Seglen P. O. Preparation of rat liver cells. I. Effect of Ca 2+ on enzymatic dispersion of isolated, perfused liver. Exp Cell Res. 1972 Oct;74(2):450–454. doi: 10.1016/0014-4827(72)90400-4. [DOI] [PubMed] [Google Scholar]
  44. Seglen P. O. Preparation of rat liver cells. II. Effects of ions and chelators on tissue dispersion. Exp Cell Res. 1973 Jan;76(1):25–30. doi: 10.1016/0014-4827(73)90414-x. [DOI] [PubMed] [Google Scholar]
  45. Simons T. J. Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts. J Physiol. 1979 Mar;288:481–507. [PMC free article] [PubMed] [Google Scholar]
  46. Simons T. J. The preparation of human red cell ghosts containing calcium buffers. J Physiol. 1976 Mar;256(1):209–225. doi: 10.1113/jphysiol.1976.sp011321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weiss S. J., Putney J. W., Jr Does calcium mediate the increase in potassium permeability due to phenylephrine or angiotensin II in the liver? J Pharmacol Exp Ther. 1978 Dec;207(3):669–676. [PubMed] [Google Scholar]
  48. Whittam R. Control of membrane permeability to potassium in red blood cells. Nature. 1968 Aug 10;219(5154):610–610. doi: 10.1038/219610a0. [DOI] [PubMed] [Google Scholar]
  49. Williams T. F., Exton J. H., Friedmann N., Park C. R. Effects of insulin and adenosine 3',5'-monophosphate on K+ flux and glucose output in perfused rat liver. Am J Physiol. 1971 Dec;221(6):1645–1651. doi: 10.1152/ajplegacy.1971.221.6.1645. [DOI] [PubMed] [Google Scholar]
  50. Wu P. H., Phillis J. W. Receptor-mediated noradrenaline stimulation of (Na+-K+) ATPase in rat brain cortical homogenates. Gen Pharmacol. 1979;10(3):189–192. doi: 10.1016/0306-3623(79)90087-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES