Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982;324:1–10. doi: 10.1113/jphysiol.1982.sp014096

The effects of stimulation rate on calcium-dependent action potentials recorded from chick embryo heart cell aggregates.

E Mackenzie, N B Standen
PMCID: PMC1250689  PMID: 7097590

Abstract

1. Action potentials were recorded from aggregates of heart cells prepared from 3- to 7-day chick embryos. At 3 days the maximum rate of rise (+ Vmax) was insensitive to TTX; at 7 days it was considerably reduced by TTX. 2. In the presence of TTX the action potential overshoot was dependent on [Ca]0; the results may be fitted using constant field theory and assuming that the membrane is over a hundred times more permeable to Ca than to Na or K. 3. An increase in stimulation rate in the range 0.2-2 Hz led to an increase in both overshoot and + Vmax. This effect was not seen after addition of 20 mM-tetraethylammonium ions, nor when Sr was substituted for Ca in the external medium. We suggest that these rate-dependent changes may result from partial inactivation of an outward K current.

Full text

PDF
10

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bass B. G. Restitution of the action potential in cat papillary muscle. Am J Physiol. 1975 Jun;228(6):1717–1724. doi: 10.1152/ajplegacy.1975.228.6.1717. [DOI] [PubMed] [Google Scholar]
  2. Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
  3. Boyett M. R., Jewell B. R. Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart. Prog Biophys Mol Biol. 1980;36(1):1–52. doi: 10.1016/0079-6107(81)90003-1. [DOI] [PubMed] [Google Scholar]
  4. CRANEFIELD P. F., HOFFMAN B. F. Electrophysiology of single cardiac cells. Physiol Rev. 1958 Jan;38(1):41–76. doi: 10.1152/physrev.1958.38.1.41. [DOI] [PubMed] [Google Scholar]
  5. Carmeliet E. Repolarisation and frequency in cardiac cells. J Physiol (Paris) 1977;73(7):903–923. [PubMed] [Google Scholar]
  6. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRANKENHAEUSER B. Sodium permeability in toad nerve and in squid nerve. J Physiol. 1960 Jun;152:159–166. doi: 10.1113/jphysiol.1960.sp006477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fozzard H. A., Sheu S. S. Intracellular potassium and sodium activities of chick ventricular muscle during embryonic development. J Physiol. 1980 Sep;306:579–586. doi: 10.1113/jphysiol.1980.sp013416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GIBBS C. L., JOHNSON E. A. Effect of changes in frequency of stimulation upon rabbit ventricular action potential. Circ Res. 1961 Jan;9:165–170. doi: 10.1161/01.res.9.1.165. [DOI] [PubMed] [Google Scholar]
  10. Gibbons W. R., Fozzard H. A. Slow inward current and contraction of sheep cardiac Purkinje fibers. J Gen Physiol. 1975 Mar;65(3):367–384. doi: 10.1085/jgp.65.3.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grabowski W., Lüttgau H. C., Schulze J. J. The effects of isoprenaline and a new beta-sympathomimetic amine upon spontaneous activity, diastolic depolarization and plateau height in cardiac Purkinje fibres. Br J Pharmacol. 1978 Jul;63(3):427–434. doi: 10.1111/j.1476-5381.1978.tb07794.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenspan K., Edmonds R. E., Fisch C. The relation of contractile enhancement to action potential change in canine myocardium. Circ Res. 1967 Mar;20(3):311–320. doi: 10.1161/01.res.20.3.311. [DOI] [PubMed] [Google Scholar]
  13. HOFFMAN B. F., SUCKLING E. E. Effect of heart rate on cardiac membrane potentials and the unipolar electrogram. Am J Physiol. 1954 Oct;179(1):123–130. doi: 10.1152/ajplegacy.1954.179.1.123. [DOI] [PubMed] [Google Scholar]
  14. Hiraoka M., Sano T. Role of slow inward current in the genesis of ventricular arrhythmia. Jpn Circ J. 1976 Dec;40(12):1419–1427. doi: 10.1253/jcj.40.1419. [DOI] [PubMed] [Google Scholar]
  15. Kenyon J. L., Gibbons W. R. Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol. 1979 Feb;73(2):117–138. doi: 10.1085/jgp.73.2.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kohlhardt M., Haastert H. P., Krause H. Evidence of non-specificity of the Ca channel in mammalian myocardial fibre membranes. Substitution of Ca by Sr, Ba or Mg as charge carriers. Pflugers Arch. 1973 Aug 17;342(2):125–136. doi: 10.1007/BF00587843. [DOI] [PubMed] [Google Scholar]
  17. MOORE E. N., PRESTON J. B., MOE G. K. DURATIONS OF TRANSMEMBRANE ACTION POTENTIALS AND FUNCTIONAL REFRACTORY PERIODS OF CANINE FALSE TENDON AND VENTRICULAR MYOCARDIUM: COMPARISONS IN SINGLE FIBERS. Circ Res. 1965 Sep;17:259–273. doi: 10.1161/01.res.17.3.259. [DOI] [PubMed] [Google Scholar]
  18. MOSCONA A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res. 1961 Jan;22:455–475. doi: 10.1016/0014-4827(61)90122-7. [DOI] [PubMed] [Google Scholar]
  19. McDonald T. F., Sachs H. G. Electrical activity in embryonic heart cell aggregates. Developmental aspects. Pflugers Arch. 1975;354(2):151–164. doi: 10.1007/BF00579945. [DOI] [PubMed] [Google Scholar]
  20. Meves H., Vogel W. Calcium inward currents in internally perfused giant axons. J Physiol. 1973 Nov;235(1):225–265. doi: 10.1113/jphysiol.1973.sp010386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nathan R. D., DeHaan R. L. Voltage clamp analysis of embryonic heart cell aggregates. J Gen Physiol. 1979 Feb;73(2):175–198. doi: 10.1085/jgp.73.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nathan R. D., Pooler J. P., DeHaan R. L. Ultraviolet-induced alterations of beat rate and electrical properties of embryonic chick heart cell aggregates. J Gen Physiol. 1976 Jan;67(1):27–44. doi: 10.1085/jgp.67.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Noble S., Shimoni Y. Voltage-dependent potentiation of the slow inward current in frog atrium. J Physiol. 1981 Jan;310:77–95. doi: 10.1113/jphysiol.1981.sp013538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pappano A. J. Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev. 1977 Mar;29(1):3–33. [PubMed] [Google Scholar]
  25. Reuter H., Scholz H. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol. 1977 Jan;264(1):17–47. doi: 10.1113/jphysiol.1977.sp011656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shigenobu K., Sperelakis N. Calcium current channels induced by catecholamines in chick embryonic hearts whose fast sodium channels are blocked by tetrodotoxin or elevated potassium. Circ Res. 1972 Dec;31(6):932–952. doi: 10.1161/01.res.31.6.932. [DOI] [PubMed] [Google Scholar]
  27. Shigenobu K., Sperelakis N. Development of sensitivity to tetrodotoxin of chick embryonic hearts with age. J Mol Cell Cardiol. 1971 Dec;3(3):271–286. doi: 10.1016/0022-2828(71)90046-0. [DOI] [PubMed] [Google Scholar]
  28. Siegelbaum S. A., Tsien R. W. Calcium-activated transient outward current in calf cardiac Purkinje fibres. J Physiol. 1980 Feb;299:485–506. doi: 10.1113/jphysiol.1980.sp013138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vassalle M. Electrogenic suppression of automaticity in sheep and dog purkinje fibers. Circ Res. 1970 Sep;27(3):361–377. doi: 10.1161/01.res.27.3.361. [DOI] [PubMed] [Google Scholar]
  30. Vereecke J., Carmeliet E. Sr action potentials in cardiac Purkyne fibres. I. Evidence for a regenerative increase in Sr conductance. Pflugers Arch. 1971;322(1):60–72. doi: 10.1007/BF00586665. [DOI] [PubMed] [Google Scholar]
  31. Vitek M., Trautwein W. Slow inward current and action potential in cardiac Purkinje fibres. The effect of Mn plus,plus-ions. Pflugers Arch. 1971;323(3):204–218. doi: 10.1007/BF00586384. [DOI] [PubMed] [Google Scholar]
  32. Weingart R., Kass R. S., Tsien R. W. Is digitalis inotropy associated with enhanced slow inward calcium current? Nature. 1978 Jun 1;273(5661):389–392. doi: 10.1038/273389a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES