Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1989 Aug;165:87–100.

Ultrastructural and cytochemical characterisation of the floor plate ependyma of the developing rat spinal cord

T Yoshioka 1, O Tanaka 1
PMCID: PMC1256659  PMID: 17103628

Full text

PDF
91

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein J. J., Bernstein M. E. Effect of glial-ependymal scar and teflon arrest on the regenerative capacity of goldfish spinal cord. Exp Neurol. 1967 Sep;19(1):25–32. doi: 10.1016/0014-4886(67)90004-0. [DOI] [PubMed] [Google Scholar]
  2. Bruni J. E., Del Bigio M. R., Clattenburg R. E. Ependyma: normal and pathological. A review of the literature. Brain Res. 1985 Apr;356(1):1–19. doi: 10.1016/0165-0173(85)90016-5. [DOI] [PubMed] [Google Scholar]
  3. Bruni J. E., Reddy K. Ependyma of the central canal of the rat spinal cord: a light and transmission electron microscopic study. J Anat. 1987 Jun;152:55–70. [PMC free article] [PubMed] [Google Scholar]
  4. Brückner G., Biesold D. Histochemistry of glycogen deposition in perinatal rat brain: importance of radial glial cells. J Neurocytol. 1981 Oct;10(5):749–757. doi: 10.1007/BF01262651. [DOI] [PubMed] [Google Scholar]
  5. Gamble H. J. Electron microscope observations on the human foetal and embryonic spinal cord. J Anat. 1969 May;104(Pt 3):435–453. [PMC free article] [PubMed] [Google Scholar]
  6. Gilmore S. A., Leiting J. E. Changes in the central canal area of immature rats following spinal cord injury. Brain Res. 1980 Nov 10;201(1):185–189. doi: 10.1016/0006-8993(80)90783-0. [DOI] [PubMed] [Google Scholar]
  7. Gilmore S. A., Sims T. J., Leiting J. E. Central canal area in the early postnatal rat: normal development and radiation-induced changes. Brain Res. 1984 Jun;316(2):149–157. doi: 10.1016/0165-3806(84)90301-8. [DOI] [PubMed] [Google Scholar]
  8. Henrikson C. K., Vaughn J. E. Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord. J Neurocytol. 1974 Dec;3(6):659–675. doi: 10.1007/BF01097190. [DOI] [PubMed] [Google Scholar]
  9. Hinds J. W., Hinds P. L. Reconstruction of dendritic growth cones in neonatal mouse olfactory bulb. J Neurocytol. 1972 Sep;1(2):169–187. doi: 10.1007/BF01099183. [DOI] [PubMed] [Google Scholar]
  10. Jordan F. L., Rieke G. K., Thomas W. E. Presence and development of ependymal cells in primary tissue cultures derived from embryonic rat cerebral cortex. Brain Res. 1987 Sep;432(1):97–110. doi: 10.1016/0165-3806(87)90012-5. [DOI] [PubMed] [Google Scholar]
  11. MCKAY D. G., ADAMS E. C., HERTIG A. T., DANZIGER S. Histochemical horizones in human embryos. II. 6 And 7 millimeter embryos-Streeter horizon XIV. Anat Rec. 1956 Dec;126(4):433–463. doi: 10.1002/ar.1091260404. [DOI] [PubMed] [Google Scholar]
  12. Malinský J., Brichová H. Fine structure of ependyma in spinal cord of human embryos. Folia Morphol (Praha) 1967;15(1):68–78. [PubMed] [Google Scholar]
  13. McKAY D. G., ADAMS E. C., HERTIG A. T., DANZIGER S. Histochemical horizons in human embryos. I. Five millimeter embryo, Streeter horizon XIII. Anat Rec. 1955 Jun;122(2):125–151. doi: 10.1002/ar.1091220202. [DOI] [PubMed] [Google Scholar]
  14. Pannese E., Luciano L., Iurato S., Reale E. Lysosomes in normal and degenerating neuroblasts of the chick embryo spinal ganglia. A cytochemical and quantitative study by electron microscopy. Acta Neuropathol. 1976 Nov 15;36(3):209–220. doi: 10.1007/BF00685365. [DOI] [PubMed] [Google Scholar]
  15. Poste G. Sub-lethal autolysis. Modification of cell periphery by lysosomal enzymes. Exp Cell Res. 1971 Jul;67(1):11–16. doi: 10.1016/0014-4827(71)90615-x. [DOI] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rall D. P. Transport through the ependymal linings. Prog Brain Res. 1968;29:159–172. doi: 10.1016/S0079-6123(08)64154-0. [DOI] [PubMed] [Google Scholar]
  18. Robinson J. M., Karnovsky M. J. Ultrastructural localization of several phosphatases with cerium. J Histochem Cytochem. 1983 Oct;31(10):1197–1208. doi: 10.1177/31.10.6309949. [DOI] [PubMed] [Google Scholar]
  19. Schoenen J. Histoenzymology of the developing rat spinal cord. Neuropathol Appl Neurobiol. 1978 Jan-Feb;4(1):37–46. doi: 10.1111/j.1365-2990.1978.tb00527.x. [DOI] [PubMed] [Google Scholar]
  20. Seitz R., Löhler J., Schwendemann G. Ependyma and meninges of the spinal cord of the mouse. A light-and electron-microscopic study. Cell Tissue Res. 1981;220(1):61–72. doi: 10.1007/BF00209966. [DOI] [PubMed] [Google Scholar]
  21. Simón-Marín R., Vilanova J. R., Aguinagalde A., Barberá-Guillem E. Vascular architecture of the developing spinal cord in the rat: a suggested model. J Embryol Exp Morphol. 1983 Aug;76:27–36. [PubMed] [Google Scholar]
  22. Sturrock R. R. A quantitative and morphological study of vascularisation of the developing mouse spinal cord. J Anat. 1981 Mar;132(Pt 2):203–221. [PMC free article] [PubMed] [Google Scholar]
  23. Sturrock R. R. An electron microscopic study of the development of the ependyma of the central canal of the mouse spinal cord. J Anat. 1981 Jan;132(Pt 1):119–136. [PMC free article] [PubMed] [Google Scholar]
  24. Sturrock R. R., Smart I. H. A morphological study of the mouse subependymal layer from embryonic life to old age. J Anat. 1980 Mar;130(Pt 2):391–415. [PMC free article] [PubMed] [Google Scholar]
  25. Tanaka O., Yoshioka T., Shinohara H. Secretory activity in the floor plate neuroepithelium of the developing human spinal cord: morphological evidence. Anat Rec. 1988 Oct;222(2):185–190. doi: 10.1002/ar.1092220211. [DOI] [PubMed] [Google Scholar]
  26. Uehara M., Ueshima T. Distribution of glycogen in the floor plate of the chick spinal cord during development. Anat Rec. 1984 May;209(1):105–113. doi: 10.1002/ar.1092090113. [DOI] [PubMed] [Google Scholar]
  27. Vigh-Teichmann I., Vigh B. The system of cerebrospinal fluid-contacting neurons. Arch Histol Jpn. 1983 Sep;46(4):427–468. doi: 10.1679/aohc.46.427. [DOI] [PubMed] [Google Scholar]
  28. Vigh B., Vigh-Teichmann I. Comparative ultrastructure of the cerebrospinal fluid-contacting neurons. Int Rev Cytol. 1973;35:189–251. doi: 10.1016/s0074-7696(08)60355-1. [DOI] [PubMed] [Google Scholar]
  29. Wender M., Kozik M., Sniatała-Kamasa M. Activity of acid phosphatase and TPP-ase at a fine structure level in the neuroglia as related to myelination of the brain. Acta Histochem. 1976;57(2):235–244. doi: 10.1016/S0065-1281(76)80051-7. [DOI] [PubMed] [Google Scholar]
  30. Wilson D. B. Ultrastructural localization of acid phosphatase in the hindbrain of the mouse embryo. J Histochem Cytochem. 1986 Apr;34(4):507–512. doi: 10.1177/34.4.3950389. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES