Abstract
The aim of the present investigation was to study the developing peptidergic innervation of the human fetal heart of 7-24 wk gestational age. An immunohistochemical approach was adopted and the total innervation visualised with antisera to general neuronal and Schwann cell markers, while the onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), somatostatin, vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) and substance P (SP). Cardiac ganglia and nerves were demonstrated from 7 wk of gestation whereas peptide-immunoreactive nerves were not observed until the 10th week of gestation. NPY-immunoreactive nerve fibres constituted the major subpopulation of peptide-containing nerves identified in the fetal heart, exhibiting a descending atrial to ventricular density gradient, and were first identified during the 10th wk of gestation. Somatostatin- and VIP-immunoreactive nerves appeared at 10-12 wk of gestation and were mainly distributed in the atria. Somatostatin immunoreactivity was localised to cell bodies in cardiac ganglia, as well as to nerve fibres, indicating an intrinsic origin for this nerve subpopulation. Conversely, the other peptide-containing nerves appear to be of extrinsic origin, including those immunoreactive for VIP. Intracardiac neurons exhibit a transient expression of tyrosine hydroxylase immunoreactivity. Putative sympathetic nerve fibres, displaying tyrosine hydroxylase and NPY immunoreactivity, were demonstrated before the adrenergic innervation has previously been shown to be present by formaldehyde-induced fluorescence staining of catecholamines. The onset of the CGRP- and SP-immunoreactive innervation, at 18-24 wk of gestation, followed the appearance of other peptide-containing nerves, suggesting that the sensory, afferent innervation occurs later than the autonomic. The differential appearance and distribution of peptide-containing nerve subpopulations indicate that there is a chronological order to the development of the autonomic and sensory components of human cardiac innervation.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chamley J. H., Campbell G. R., Burnstock G. Dedifferentiation, redifferentiation and bundle formation of smooth muscle cells in tissue culture: the influence of cell number and nerve fibres. J Embryol Exp Morphol. 1974 Oct;32(2):297–323. [PubMed] [Google Scholar]
- Dail W. G., Jr, Palmer G. C. Localization and correltion of catecholamine-containing cells with adenyl cyclase nd phosphodiesterase activities in the human fetal heart. Anat Rec. 1973 Oct;177(2):265–287. doi: 10.1002/ar.1091770208. [DOI] [PubMed] [Google Scholar]
- Day S. M., Gu J., Polak J. M., Bloom S. R. Somatostatin in the human heart and comparison with guinea pig and rat heart. Br Heart J. 1985 Feb;53(2):153–157. doi: 10.1136/hrt.53.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franco-Cereceda A., Lundberg J. M., Hökfelt T. Somatostatin: an inhibitory parasympathetic transmitter in the human heart? Eur J Pharmacol. 1986 Dec 2;132(1):101–102. doi: 10.1016/0014-2999(86)90019-1. [DOI] [PubMed] [Google Scholar]
- Gardner E., O'Rahilly R. The nerve supply and conducting system of the human heart at the end of the embryonic period proper. J Anat. 1976 Jul;121(Pt 3):571–587. [PMC free article] [PubMed] [Google Scholar]
- Gennser G., Von Studnitz W. Noradrenaline synthesis in human fetal heart. Experientia. 1975 Dec 15;31(12):1422–1424. doi: 10.1007/BF01923223. [DOI] [PubMed] [Google Scholar]
- Gordon L., Wharton J., Moore S. E., Walsh F. S., Moscoso J. G., Penketh R., Wallwork J., Taylor K. M., Yacoub M. H., Polak J. M. Myocardial localization and isoforms of neural cell adhesion molecule (N-CAM) in the developing and transplanted human heart. J Clin Invest. 1990 Oct;86(4):1293–1300. doi: 10.1172/JCI114837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassall C. J., Penketh R., Rodeck C., Burnstock G. The intracardiac neurones of the fetal human heart in culture. Anat Embryol (Berl) 1990;182(4):329–337. doi: 10.1007/BF02433493. [DOI] [PubMed] [Google Scholar]
- Kanerva L., Hervonen A., Hervonen H. Morphological characteristics of the ontogenesis of the mammalian peripheral adrenergic nervous system with special remarks on the human fetus. Med Biol. 1974 Jun;52(3):144–153. [PubMed] [Google Scholar]
- Kohtz D. S., Dische N. R., Inagami T., Goldman B. Growth and partial differentiation of presumptive human cardiac myoblasts in culture. J Cell Biol. 1989 Mar;108(3):1067–1078. doi: 10.1083/jcb.108.3.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navaratnam V. Development of the nerve supply to the human heart. Br Heart J. 1965 Sep;27(5):640–650. doi: 10.1136/hrt.27.5.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navaratnam V. The ontogenesis of cholinesterase activity within the heart and cardiac ganglia in man, rat, rabbit and guinea-pig. J Anat. 1965 Jul;99(Pt 3):459–467. [PMC free article] [PubMed] [Google Scholar]
- Pappano A. J. Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev. 1977 Mar;29(1):3–33. [PubMed] [Google Scholar]
- Partanen S., Korkala O. Catecholamines in human fetal heart. Experientia. 1974 Jul 15;30(7):798–800. doi: 10.1007/BF01924193. [DOI] [PubMed] [Google Scholar]
- Purjeranta M., Rechardt L., Pelto-Huikko M., Kyösola K. Light and electron microscopic demonstration of neuropeptide Y-like immunoreactive nerves in human cardiac muscle. Virchows Arch A Pathol Anat Histopathol. 1986;410(2):147–151. doi: 10.1007/BF00713519. [DOI] [PubMed] [Google Scholar]
- Rechardt L., Aalto-Setälä K., Purjeranta M., Pelto-Huikko M., Kyösola K. Peptidergic innervation of human atrial myocardium: an electron microscopical and immunocytochemical study. J Auton Nerv Syst. 1986 Sep;17(1):21–32. doi: 10.1016/0165-1838(86)90041-x. [DOI] [PubMed] [Google Scholar]
- Smith R. B. The development of autonomic neurons in the human heart. Anat Anz. 1971;129(1):70–76. [PubMed] [Google Scholar]
- Taylor I. M., Smith R. B. Cholinesterase activity in the human fetal heart between the 35- and 160-millimeter crown-rump length stages. J Histochem Cytochem. 1971 Aug;19(8):498–503. doi: 10.1177/19.8.498. [DOI] [PubMed] [Google Scholar]
- Ursell P. C., Ren C. L., Danilo P., Jr Anatomic distribution of autonomic neural tissue in the developing dog heart: II. Nonadrenergic noncholinergic innervation by calcitonin gene-related peptide-immunoreactive tissue. Anat Rec. 1991 Aug;230(4):531–538. doi: 10.1002/ar.1092300413. [DOI] [PubMed] [Google Scholar]
- Walker D. Functional development of the autonomic innervation of the human fetal heart. Biol Neonate. 1974;25(1-2):31–43. doi: 10.1159/000240676. [DOI] [PubMed] [Google Scholar]
- Webb S. C., Krikler D. M., Hendry W. G., Adrian T. E., Bloom S. R. Electrophysiological actions of somatostatin on the atrioventricular junction in sinus rhythm and reentry tachycardia. Br Heart J. 1986 Sep;56(3):236–241. doi: 10.1136/hrt.56.3.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weihe E., Reinecke M., Forssmann W. G. Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the mammalian heart. Interrelation with neurotensin- and substance P-like immunoreactive nerves. Cell Tissue Res. 1984;236(3):527–540. doi: 10.1007/BF00217219. [DOI] [PubMed] [Google Scholar]
- Weihe E., Reinecke M. Peptidergic innervation of the mammalian sinus nodes: vasoactive intestinal polypeptide, neurotensin, substance P. Neurosci Lett. 1981 Nov 4;26(3):283–288. doi: 10.1016/0304-3940(81)90146-4. [DOI] [PubMed] [Google Scholar]
- Wharton J., Gulbenkian S., Merighi A., Kuhn D. M., Jahn R., Taylor K. M., Polak J. M. Immunohistochemical and ultrastructural localisation of peptide-containing nerves and myocardial cells in the human atrial appendage. Cell Tissue Res. 1988 Oct;254(1):155–166. doi: 10.1007/BF00220029. [DOI] [PubMed] [Google Scholar]
- Wharton J., Gulbenkian S., Mulderry P. K., Ghatei M. A., McGregor G. P., Bloom S. R., Polak J. M. Capsaicin induces a depletion of calcitonin gene-related peptide (CGRP)-immunoreactive nerves in the cardiovascular system of the guinea pig and rat. J Auton Nerv Syst. 1986 Aug;16(4):289–309. doi: 10.1016/0165-1838(86)90035-4. [DOI] [PubMed] [Google Scholar]
- Wharton J., Gulbenkian S. Peptides in the mammalian cardiovascular system. Experientia. 1987 Jul 15;43(7):821–832. doi: 10.1007/BF01945360. [DOI] [PubMed] [Google Scholar]
- Wharton J., Polak J. M., Gordon L., Banner N. R., Springall D. R., Rose M., Khagani A., Wallwork J., Yacoub M. H. Immunohistochemical demonstration of human cardiac innervation before and after transplantation. Circ Res. 1990 Apr;66(4):900–912. doi: 10.1161/01.res.66.4.900. [DOI] [PubMed] [Google Scholar]