Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Dec;60(6):1534–1539. doi: 10.1016/S0006-3495(91)82187-7

Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes.

J Ibarra 1, G E Morley 1, M Delmar 1
PMCID: PMC1260210  PMID: 1777570

Abstract

The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. Our results show that (a) Ik1 is present during depolarization, as well as in the final phase of repolarization of the cardiac action potential. (b) The current reaches the zone of inward-going rectification before the regenerative action potential ensues. (c) The maximal outward current amplitude during repolarization is significantly lower than during depolarization, which supports the hypothesis that in adult guinea pig ventricular myocytes, Ik1 rectification is accentuated during the action potential plateau. Our results stress the importance of Ik1 in the modulation of cell excitability in the ventricular myocyte.

Full text

PDF
1535

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belles B., Hescheler J., Trube G. Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide. Pflugers Arch. 1987 Aug;409(6):582–588. doi: 10.1007/BF00584657. [DOI] [PubMed] [Google Scholar]
  2. Cole K. S. Digital operations can be deceptive. Squid giant axon membrane. Biophys J. 1980 Sep;31(3):433–434. doi: 10.1016/S0006-3495(80)85070-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delmar M., Glass L., Michaels D. C., Jalife J. Ionic basis and analytical solution of the wenckebach phenomenon in guinea pig ventricular myocytes. Circ Res. 1989 Sep;65(3):775–788. doi: 10.1161/01.res.65.3.775. [DOI] [PubMed] [Google Scholar]
  4. Delmar M., Michaels D. C., Jalife J. Slow recovery of excitability and the Wenckebach phenomenon in the single guinea pig ventricular myocyte. Circ Res. 1989 Sep;65(3):761–774. doi: 10.1161/01.res.65.3.761. [DOI] [PubMed] [Google Scholar]
  5. Doerr T., Denger R., Doerr A., Trautwein W. Ionic currents contributing to the action potential in single ventricular myocytes of the guinea pig studied with action potential clamp. Pflugers Arch. 1990 May;416(3):230–237. doi: 10.1007/BF00392058. [DOI] [PubMed] [Google Scholar]
  6. Doerr T., Denger R., Trautwein W. Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pflugers Arch. 1989 Apr;413(6):599–603. doi: 10.1007/BF00581808. [DOI] [PubMed] [Google Scholar]
  7. Fischmeister R., DeFelice L. J., Ayer R. K., Jr, Levi R., DeHaan R. L. Channel currents during spontaneous action potentials in embryonic chick heart cells. The action potential patch clamp. Biophys J. 1984 Aug;46(2):267–271. doi: 10.1016/S0006-3495(84)84020-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hartzell H. C., White R. E. Effects of magnesium on inactivation of the voltage-gated calcium current in cardiac myocytes. J Gen Physiol. 1989 Oct;94(4):745–767. doi: 10.1085/jgp.94.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hess P., Lansman J. B., Tsien R. W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol. 1986 Sep;88(3):293–319. doi: 10.1085/jgp.88.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ishihara K., Mitsuiye T., Noma A., Takano M. The Mg2+ block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. J Physiol. 1989 Dec;419:297–320. doi: 10.1113/jphysiol.1989.sp017874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jalife J. The sucrose gap preparation as a model of AV nodal transmission: are dual pathways necessary for reciprocation and AV nodal "echoes"? Pacing Clin Electrophysiol. 1983 Sep;6(5 Pt 2):1106–1122. doi: 10.1111/j.1540-8159.1983.tb04449.x. [DOI] [PubMed] [Google Scholar]
  12. Kurachi Y. Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. J Physiol. 1985 Sep;366:365–385. doi: 10.1113/jphysiol.1985.sp015803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lorente P., Delgado C., Delmar M., Henzel D., Jalife J. Hysteresis in the excitability of isolated guinea pig ventricular myocytes. Circ Res. 1991 Nov;69(5):1301–1315. doi: 10.1161/01.res.69.5.1301. [DOI] [PubMed] [Google Scholar]
  14. Matsuda H. Effects of external and internal K+ ions on magnesium block of inwardly rectifying K+ channels in guinea-pig heart cells. J Physiol. 1991 Apr;435:83–99. doi: 10.1113/jphysiol.1991.sp018499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matsuda H. Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. J Physiol. 1988 Mar;397:237–258. doi: 10.1113/jphysiol.1988.sp016998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mazzanti M., DeFelice L. J. Ca modulates outward current through IK1 channels. J Membr Biol. 1990 Jun;116(1):41–45. doi: 10.1007/BF01871670. [DOI] [PubMed] [Google Scholar]
  17. Mazzanti M., DeFelice L. J. K channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. Biophys J. 1988 Dec;54(6):1139–1148. doi: 10.1016/S0006-3495(88)83048-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mazzanti M., DiFrancesco D. Intracellular Ca modulates K-inward rectification in cardiac myocytes. Pflugers Arch. 1989 Jan;413(3):322–324. doi: 10.1007/BF00583549. [DOI] [PubMed] [Google Scholar]
  19. Oliva C., Cohen I. S., Pennefather P. The mechanism of rectification of iK1 in canine Purkinje myocytes. J Gen Physiol. 1990 Aug;96(2):299–318. doi: 10.1085/jgp.96.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sakmann B., Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984 Feb;347:641–657. doi: 10.1113/jphysiol.1984.sp015088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Starzak M. E., Starzak R. J. An action potential clamp to probe the effectiveness of space clamp in axons. IEEE Trans Biomed Eng. 1978 Mar;25(2):201–204. doi: 10.1109/TBME.1978.326249. [DOI] [PubMed] [Google Scholar]
  22. Tourneur Y. Action potential-like responses due to the inward rectifying potassium channel. J Membr Biol. 1986;90(2):115–122. doi: 10.1007/BF01869929. [DOI] [PubMed] [Google Scholar]
  23. Tourneur Y., Mitra R., Morad M., Rougier O. Activation properties of the inward-rectifying potassium channel on mammalian heart cells. J Membr Biol. 1987;97(2):127–135. doi: 10.1007/BF01869419. [DOI] [PubMed] [Google Scholar]
  24. Tseng G. N. Calcium current restitution in mammalian ventricular myocytes is modulated by intracellular calcium. Circ Res. 1988 Aug;63(2):468–482. doi: 10.1161/01.res.63.2.468. [DOI] [PubMed] [Google Scholar]
  25. de Haas V., Vogel W. Sodium and potassium currents recorded during an action potential. Eur Biophys J. 1989;17(1):49–51. doi: 10.1007/BF00257145. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES