Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1992 Mar;61(3):716–724. doi: 10.1016/S0006-3495(92)81876-3

Spectral hole burning study of protoporphyrin IX substituted myoglobin.

J Zollfrank 1, J Friedrich 1, F Parak 1
PMCID: PMC1260289  PMID: 1504243

Abstract

Protoporphyrin IX substituted myoglobin reveals excellent hole burning properties. We investigated the frequency shift of persistent spectral holes under isotropic pressure conditions in a range from 0 to 2.4 MPa. In this range, the protein behaves like an elastic solid. The shift of the holes under pressure shows a remarkable frequency dependence from which the compressibility of the protein can be determined. The compressibility, in turn, allows for an estimation of the equilibrium volume fluctuations. Within the frame of the model used to interpret the pressure data, it is possible to determine the absorption frequency of the isolated chromophore and the associated solvent shift in the protein environment.

Full text

PDF
720

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740–2741. doi: 10.1073/pnas.73.8.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fidy J., Vanderkooi J. M., Zollfrank J., Friedrich J. More than two pyrrole tautomers of mesoporphyrin stabilized by a protein. High resolution optical spectroscopic study. Biophys J. 1992 Feb;61(2):381–391. doi: 10.1016/S0006-3495(92)81844-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
  4. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  5. Gavish B., Gratton E., Hardy C. J. Adiabatic compressibility of globular proteins. Proc Natl Acad Sci U S A. 1983 Feb;80(3):750–754. doi: 10.1073/pnas.80.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hong M. K., Braunstein D., Cowen B. R., Frauenfelder H., Iben I. E., Mourant J. R., Ormos P., Scholl R., Schulte A., Steinbach P. J. Conformational substates and motions in myoglobin. External influences on structure and dynamics. Biophys J. 1990 Aug;58(2):429–436. doi: 10.1016/S0006-3495(90)82388-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iben IE, Braunstein D, Doster W, Frauenfelder H, Hong MK, Johnson JB, Luck S, Ormos P, Schulte A, Steinbach PJ. Glassy behavior of a protein. Phys Rev Lett. 1989 Apr 17;62(16):1916–1919. doi: 10.1103/PhysRevLett.62.1916. [DOI] [PubMed] [Google Scholar]
  8. Iizuka T., Yamamoto H., Kotani M., Yonetani T. Low temperature photodissociation of hemoproteins: carbon monoxide complex of myoglobin and hemoglobin. Biochim Biophys Acta. 1974 Nov 5;371(1):126–139. doi: 10.1016/0005-2795(74)90161-5. [DOI] [PubMed] [Google Scholar]
  9. Kador L, Jahn S, Haarer D, Silbey R. Contributions of the electrostatic and the dispersion interaction to the solvent shift in a dye-polymer system, as investigated by hole-burning spectroscopy. Phys Rev B Condens Matter. 1990 Jun 15;41(17):12215–12226. doi: 10.1103/physrevb.41.12215. [DOI] [PubMed] [Google Scholar]
  10. Karplus M., McCammon J. A. The internal dynamics of globular proteins. CRC Crit Rev Biochem. 1981;9(4):293–349. doi: 10.3109/10409238109105437. [DOI] [PubMed] [Google Scholar]
  11. Köhler W, Friedrich J, Scheer H. Conformational barriers in low-temperature proteins and glasses. Phys Rev A Gen Phys. 1988 Jan 15;37(2):660–662. doi: 10.1103/physreva.37.660. [DOI] [PubMed] [Google Scholar]
  12. Köhler W, Zollfrank J, Friedrich J. Thermal irreversibility in optically labeled low-temperature glasses. Phys Rev B Condens Matter. 1989 Mar 15;39(8):5414–5424. doi: 10.1103/physrevb.39.5414. [DOI] [PubMed] [Google Scholar]
  13. Overkamp M., Twilfer H., Gersonde K. Conformation-controlled trans-effect of the proximal histidine in haemoglobins. An electron spin resonance study of monomeric nitrosyl-57Fe-haemoglobins. Z Naturforsch C. 1976 Sep-Oct;31(9-10):524–533. doi: 10.1515/znc-1976-9-1009. [DOI] [PubMed] [Google Scholar]
  14. Parak F., Hartmann H., Aumann K. D., Reuscher H., Rennekamp G., Bartunik H., Steigemann W. Low temperature X-ray investigation of structural distributions in myoglobin. Eur Biophys J. 1987;15(4):237–249. doi: 10.1007/BF00577072. [DOI] [PubMed] [Google Scholar]
  15. Sesselmann T, Richter W, Haarer D, Morawitz H. Spectroscopic studies of impurity-host interactions in dye-doped polymers: Hydrostatic-pressure effects versus temperature effects. Phys Rev B Condens Matter. 1987 Nov 15;36(14):7601–7611. doi: 10.1103/physrevb.36.7601. [DOI] [PubMed] [Google Scholar]
  16. Zollfrank J., Friedrich J., Vanderkooi J. M., Fidy J. Conformational relaxation of a low-temperature protein as probed by photochemical hole burning. Horseradish peroxidase. Biophys J. 1991 Feb;59(2):305–312. doi: 10.1016/S0006-3495(91)82224-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES