Abstract
We review dielectrophoretic forces on cells and colloidal particles, emphasizing their use for manipulating and characterizing the electrical properties of suspended particles. Compared with dielectric spectroscopy, these methods offer a measure of independence from electrode artifacts and mixture theory. On the assumption that the particles can be modeled as uniform dielectric objects with effective dielectric properties, a simple theory can be developed for the frequency variation in the field-induced forces. For particles exhibiting counterion polarization, dielectrophoretic forces differ considerably from predictions of this theory at low frequencies, apparently because of double layer phenomena.
Full text
PDF![180](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/86ad722f288f/biophysj00099-0195.png)
![181](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/d34902888cdb/biophysj00099-0196.png)
![182](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/47459be3190a/biophysj00099-0197.png)
![183](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/aaaaa85ef2b1/biophysj00099-0198.png)
![184](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/fc21d68ed89f/biophysj00099-0199.png)
![185](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/fcd00b4110ef/biophysj00099-0200.png)
![186](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/39cf8bd58caf/biophysj00099-0201.png)
![187](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/a7cc80895b41/biophysj00099-0202.png)
![188](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/986077d22b90/biophysj00099-0203.png)
![189](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/13def549eea3/biophysj00099-0204.png)
![190](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b9/1262135/4b68a06499ed/biophysj00099-0205.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez O., Brodwick M., Latorre R., McLaughlin A., McLaughlin S., Szabo G. Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. Biophys J. 1983 Dec;44(3):333–342. doi: 10.1016/S0006-3495(83)84307-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnold W. M., Schmutzler R. K., Al-Hasani S., Krebs D., Zimmermann U. Differences in membrane properties between unfertilised and fertilised single rabbit oocytes demonstrated by electro-rotation. Comparison with cells from early embryos. Biochim Biophys Acta. 1989 Feb 13;979(1):142–146. doi: 10.1016/0005-2736(89)90535-x. [DOI] [PubMed] [Google Scholar]
- Arnold W. M., Schmutzler R. K., Schmutzler A. G., van der Ven H., Al-Hasani S., Krebs D., Zimmermann U. Electro-rotation of mouse oocytes: single-cell measurements of zona-intact and zona-free cells and of the isolated zona pellucida. Biochim Biophys Acta. 1987 Dec 11;905(2):454–464. doi: 10.1016/0005-2736(87)90475-5. [DOI] [PubMed] [Google Scholar]
- Cole K. S., Li C. L., Bak A. F. Electrical analogues for tissues. Exp Neurol. 1969 Jul;24(3):459–473. doi: 10.1016/0014-4886(69)90149-6. [DOI] [PubMed] [Google Scholar]
- Egger M., Donath E., Spangenberg P., Bimmler M., Glaser R., Till U. Human platelet electrorotation change induced by activation: inducer specificity and correlation to serotonin release. Biochim Biophys Acta. 1988 Dec 9;972(3):265–276. doi: 10.1016/0167-4889(88)90201-7. [DOI] [PubMed] [Google Scholar]
- Fuhr G., Glaser R., Hagedorn R. Rotation of dielectrics in a rotating electric high-frequency field. Model experiments and theoretical explanation of the rotation effect of living cells. Biophys J. 1986 Feb;49(2):395–402. doi: 10.1016/S0006-3495(86)83649-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuhr G., Kuzmin P. I. Behavior of cells in rotating electric fields with account to surface charges and cell structures. Biophys J. 1986 Nov;50(5):789–795. doi: 10.1016/S0006-3495(86)83519-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geier B. M., Wendt B., Arnold W. M., Zimmermann U. The effect of mercuric salts on the electro-rotation of yeast cells and comparison with a theoretical model. Biochim Biophys Acta. 1987 Jun 12;900(1):45–55. doi: 10.1016/0005-2736(87)90276-8. [DOI] [PubMed] [Google Scholar]
- Kaler K. V., Jones T. B. Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys J. 1990 Feb;57(2):173–182. doi: 10.1016/S0006-3495(90)82520-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marszalek P., Zielinsky J. J., Fikus M., Tsong T. Y. Determination of electric parameters of cell membranes by a dielectrophoresis method. Biophys J. 1991 May;59(5):982–987. doi: 10.1016/S0006-3495(91)82312-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAULY H., SCHWAN H. P. Uber die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale; Ein Modell fur das dielektrische Verhalten von Zellsuspensionen und von Proteinlösungen. Z Naturforsch B. 1959 Feb;14B(2):125–131. [PubMed] [Google Scholar]
- Paul R., Otwinowski M. The theory of the frequency response of ellipsoidal biological cells in rotating electrical fields. J Theor Biol. 1991 Feb 21;148(4):495–519. doi: 10.1016/s0022-5193(05)80233-4. [DOI] [PubMed] [Google Scholar]
- Pohl H. A., Crane J. S. Dielectrophoresis of cells. Biophys J. 1971 Sep;11(9):711–727. doi: 10.1016/S0006-3495(71)86249-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohl H. A. Natural electrical RF oscillation from cells. J Bioenerg Biomembr. 1981 Aug;13(3-4):149–169. doi: 10.1007/BF00763837. [DOI] [PubMed] [Google Scholar]
- SCHWAN H. P. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209. doi: 10.1016/b978-1-4832-3111-2.50008-0. [DOI] [PubMed] [Google Scholar]
- Takashima S., Schwan H. P. Alignment of microscopic particles in electric fields and its biological implications. Biophys J. 1985 Apr;47(4):513–518. doi: 10.1016/S0006-3495(85)83945-X. [DOI] [PMC free article] [PubMed] [Google Scholar]