Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Apr;64(4):1133–1138. doi: 10.1016/S0006-3495(93)81479-6

Domain-induced budding of fluid membranes

Reinhard Lipowsky 1
PMCID: PMC1262431  PMID: 19431884

Abstract

Domains within fluid membranes grow by the aggregation of molecules which diffuse laterally within the membrane matrix. A simple theoretical model is introduced which predicts that a flat or weakly curved domain becomes unstable at a certain limiting size and then undergoes a budding or invagination process. This instability is driven by the competition between the bending energy of the domain and the line tension of the domain edge. For lipid bilayers, the budding domain can rupture the membrane and then it pinches off from the matrix. The same mechanism should also drive the budding of non-coated domains in biomembranes, and could even be effective when these domains are covered by a coat of clathrin molecules.

Full text

PDF
1133

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  2. Brodsky F. M. Living with clathrin: its role in intracellular membrane traffic. Science. 1988 Dec 9;242(4884):1396–1402. doi: 10.1126/science.2904698. [DOI] [PubMed] [Google Scholar]
  3. Heuser J., Kirchhausen T. Deep-etch views of clathrin assemblies. J Ultrastruct Res. 1985 Jul-Aug;92(1-2):1–27. doi: 10.1016/0889-1605(85)90123-5. [DOI] [PubMed] [Google Scholar]
  4. Kaler E. W., Murthy A. K., Rodriguez B. E., Zasadzinski J. A. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science. 1989 Sep 22;245(4924):1371–1374. doi: 10.1126/science.2781283. [DOI] [PubMed] [Google Scholar]
  5. Käs J., Sackmann E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J. 1991 Oct;60(4):825–844. doi: 10.1016/S0006-3495(91)82117-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lipowsky R. The conformation of membranes. Nature. 1991 Feb 7;349(6309):475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
  7. Miao L, Fourcade B, Rao M, Wortis M, Zia RK. Equilibrium budding and vesiculation in the curvature model of fluid lipid vesicles. Phys Rev A. 1991 Jun 15;43(12):6843–6856. doi: 10.1103/physreva.43.6843. [DOI] [PubMed] [Google Scholar]
  8. Pearse B. M., Crowther R. A. Structure and assembly of coated vesicles. Annu Rev Biophys Biophys Chem. 1987;16:49–68. doi: 10.1146/annurev.bb.16.060187.000405. [DOI] [PubMed] [Google Scholar]
  9. Seifert U, Berndl K, Lipowsky R. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. Phys Rev A. 1991 Jul 15;44(2):1182–1202. doi: 10.1103/physreva.44.1182. [DOI] [PubMed] [Google Scholar]
  10. Vaz W. L., Melo E. C., Thompson T. E. Translational diffusion and fluid domain connectivity in a two-component, two-phase phospholipid bilayer. Biophys J. 1989 Nov;56(5):869–876. doi: 10.1016/S0006-3495(89)82733-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES