Full text
PDF![(1407)](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/e545bb7db055/biochemj01033-0019.png)
![1408](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/5184c534b026/biochemj01033-0020.png)
![1409](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/98e9a8d07b48/biochemj01033-0021.png)
![1410](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/bda6ebc21304/biochemj01033-0022.png)
![1411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/c16f0ae58626/biochemj01033-0023.png)
![1412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/2156e7cf5ab6/biochemj01033-0024.png)
![1413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/8b0ed84a6ed3/biochemj01033-0025.png)
![1414](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/858ad2eb6bae/biochemj01033-0026.png)
![1415](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/c2448dba1779/biochemj01033-0027.png)
![1416](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/c3db78d5e96f/biochemj01033-0028.png)
![1417](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/b730ce7af2af/biochemj01033-0029.png)
![1418](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/b11735705266/biochemj01033-0030.png)
![1419](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/d377b32f30ed/biochemj01033-0031.png)
![1420](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/41388cf67e6b/biochemj01033-0032.png)
![1421](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/1fd6536c06fd/biochemj01033-0033.png)
![1422](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/9b8fe18c1205/biochemj01033-0034.png)
![1423](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b25/1264206/deb86ebd5acd/biochemj01033-0035.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyland E., Boyland M. E. Studies in tissue metabolism: The lactic dehydrogenases of yeast and heart-muscle. Biochem J. 1934;28(4):1417–1421. doi: 10.1042/bj0281417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott K. A., Benoy M. P., Baker Z. The metabolism of lactic and pyruvic acids in normal and tumour tissues: Rat kidney and transplantable tumours. Biochem J. 1935 Aug;29(8):1937–1950. doi: 10.1042/bj0291937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott K. A., Greig M. E. The metabolism of lactic and pyruvic acids in normal and tumour tissues: The formation of succinate. Biochem J. 1937 Jul;31(7):1021–1032. doi: 10.1042/bj0311021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott K. A., Schroeder E. F. The metabolism of lactic and pyruvic acids in normal and tumour tissue: Methods and results with kidney cortex. Biochem J. 1934;28(5):1920–1939. doi: 10.1042/bj0281920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleisch A. Some Oxidation Processes of Normal and Cancer Tissue. Biochem J. 1924;18(2):294–311. doi: 10.1042/bj0180294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes E. G. Oxidations in central and peripheral nervous tissue. Biochem J. 1930;24(4):914–925. doi: 10.1042/bj0240914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogston F. J., Green D. E. The mechanism of the reaction of substrates with molecular oxygen. I. Biochem J. 1935 Aug;29(8):1983–2004. doi: 10.1042/bj0291983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quastel J. H., Wheatley A. H. Biological oxidations in the succinic acid series. Biochem J. 1931;25(1):117–128. doi: 10.1042/bj0250117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quastel J. H., Wooldridge W. R. Some properties of the dehydrogenating enzymes of bacteria. Biochem J. 1928;22(3):689–702. doi: 10.1042/bj0220689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal O. The intensity of succinate oxidation in surviving liver tissue. Biochem J. 1937 Oct;31(10):1710–1718. doi: 10.1042/bj0311710. [DOI] [PMC free article] [PubMed] [Google Scholar]