Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1954 Apr;56(4):606–610. doi: 10.1042/bj0560606

The effect of arsenate on bacterial citrulline breakdown

V A Knivett 1
PMCID: PMC1269676  PMID: 13159888

Full text

PDF
606

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUCHER T., GARBADE K. H. Beziehung des oxydierenden Garungsferments zu Fischer-Ester bei verschiedenen Arseniatkonzentrationen. Biochim Biophys Acta. 1952 Feb;8(2):220–222. doi: 10.1016/0006-3002(52)90034-6. [DOI] [PubMed] [Google Scholar]
  2. BUCHER T., GARBADE K. H. Wirkung des oxydierenden Garungsfermentes in Gegenwart katalytischer Arseniatkonzentrationen. Biochim Biophys Acta. 1952 Feb;8(2):219–220. doi: 10.1016/0006-3002(52)90033-4. [DOI] [PubMed] [Google Scholar]
  3. DELWICHE C. C., LOOMIS W. D., STUMPF P. K. Amide metabolism in higher plants. II. The exchange of isotopic ammonia by glutamyl transphorase. Arch Biochem Biophys. 1951 Sep;33(2):333–338. doi: 10.1016/0003-9861(51)90113-0. [DOI] [PubMed] [Google Scholar]
  4. Fearon W. R. The carbamido diacetyl reaction: a test for citrulline. Biochem J. 1939 Jun;33(6):902–907. doi: 10.1042/bj0330902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gale E. F. Studies on bacterial amino-acid decarboxylases: 5. The use of specific decarboxylase preparations in the estimation of amino-acids and in protein analysis. Biochem J. 1945;39(1):46–52. doi: 10.1042/bj0390046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gornall A. G., Hunter A. A colorimetric method for the determination of citrulline. Biochem J. 1941 Jun;35(5-6):650–658. doi: 10.1042/bj0350650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUGHES D. E. A press for disrupting bacteria and other micro-organisms. Br J Exp Pathol. 1951 Apr;32(2):97–109. [PMC free article] [PubMed] [Google Scholar]
  8. KENNEDY E. P., BARKER H. A. Butyrate oxidation in the absence of inorganic phosphate by Clostridium kluyveri. J Biol Chem. 1951 Jul;191(1):419–438. [PubMed] [Google Scholar]
  9. KNIVETT V. A. Phosphorylation coupled with anaerobic breakdown of citrulline. Biochem J. 1954 Apr;56(4):602–606. [PMC free article] [PubMed] [Google Scholar]
  10. Needham D. M., Pillai R. K. The coupling of oxido-reductions and dismutations with esterification of phosphate in muscle. Biochem J. 1937 Oct;31(10):1837–1851. doi: 10.1042/bj0311837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RACKER E., KRIMSKY I. The mechanism of oxidation of aldehydes by glyceralde-hyde-3-phosphate dehydrogenase. J Biol Chem. 1952 Oct;198(2):731–743. [PubMed] [Google Scholar]
  12. SLADE H. D. Hydrolysis of arginine by soluble enzymes of Streptococcus faecalis. Arch Biochem Biophys. 1953 Jan;42(1):204–211. doi: 10.1016/0003-9861(53)90253-7. [DOI] [PubMed] [Google Scholar]
  13. STADTMAN E. R., BARKER H. A. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. VI. Reactions of acyl phosphates. J Biol Chem. 1950 Jun;184(2):769–793. [PubMed] [Google Scholar]
  14. STADTMAN E. R., NOVELLI G. D., LIPMANN F. Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J Biol Chem. 1951 Jul;191(1):365–376. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES