Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 Oct;101(1):48–55. doi: 10.1042/bj1010048

Glucose metabolism in the mucosa of the small intestine

Enzymes of the pentose phosphate pathway

L M Srivastava 1, G Hübscher 1
PMCID: PMC1270064  PMID: 4382012

Abstract

1. The occurrence of five enzymes of the pentose phosphate pathway in cell-free preparations of the mucosa of rat small intestine is described. These enzymes were found to be localized mainly in the supernatant fraction (6240000g-min.). 2. The properties of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were studied with respect to Km values for substrates and NADP+, pH optima and the effects of p-chloromercuribenzoate and palmitoyl-CoA. Higher total and specific activities of these two dehydrogenases were noted in the proximal half of the small intestine of the rat than in the distal half. 3. The specific activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the mucosa of the small intestine of the rat, cat, rabbit and guinea pig were compared. 4. In the rat the specific activities of ribose 5-phosphate isomerase, transketolase and transaldolase were higher in the supernatant fractions from the intestinal mucosa than in those from the liver. 5. The role of the pentose phosphate pathway is discussed in relation to the metabolism of hexose phosphates in the intestinal mucosa.

Full text

PDF
50

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AILHAUD G., SAMUEL D., DESNUELLE P. [Subcellular localization of acyl-CoA synthetase from intestinal mucosa]. Biochim Biophys Acta. 1963 Jan 8;67:150–152. doi: 10.1016/0006-3002(63)91806-7. [DOI] [PubMed] [Google Scholar]
  2. ALVARADO F. GLUCOSEPHOSPHATE ISOMERASE OF INTESTINAL MUCOSA. Enzymologia. 1963 Jun 30;26:12–22. [PubMed] [Google Scholar]
  3. AXELROD B., JANG R. Purification and properties of phosphoribo-isomerase from alfalfa. J Biol Chem. 1954 Aug;209(2):847–855. [PubMed] [Google Scholar]
  4. BERNSTEIN I. A. Synthesis of ribose by the chick. J Biol Chem. 1953 Nov;205(1):317–329. [PubMed] [Google Scholar]
  5. BORTZ W. M., LYNEN F. THE INHIBITION OF ACETYL COA CARBOXYLASE BY LONG CHAIN ACYL COA DERIVATIVES. Biochem Z. 1963 Aug 14;337:505–509. [PubMed] [Google Scholar]
  6. BREMER J. Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J Biol Chem. 1962 Dec;237:3628–3632. [PubMed] [Google Scholar]
  7. Brindley D. N., Hübscher G. The intracellular distribution of the enzymes catalysing the biosynthesis of glycerides in the intestinal mucosa. Biochim Biophys Acta. 1965 Dec 2;106(3):495–509. doi: 10.1016/0005-2760(65)90066-4. [DOI] [PubMed] [Google Scholar]
  8. DE LOECKER W. C., PRANKERD T. A. Factors influencing the hexose monophosphate shunt in red cells. Clin Chim Acta. 1961 Sep;6:641–647. doi: 10.1016/0009-8981(61)90108-5. [DOI] [PubMed] [Google Scholar]
  9. DISCHE Z., BORENFREUND E. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem. 1951 Oct;192(2):583–587. [PubMed] [Google Scholar]
  10. ELODI P. The role of the sulfhydryl groups in the stabilisation of the structure of the D-glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta. 1960 May 20;40:272–276. doi: 10.1016/0006-3002(60)91351-2. [DOI] [PubMed] [Google Scholar]
  11. GLOCK G. E., McLEAN P. Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochem J. 1953 Oct;55(3):400–408. doi: 10.1042/bj0550400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GLOCK G. E., McLEAN P. Levels of enzymes of the direct oxidative pathway of carbohydrate metabolism in mammalian tissues and tumours. Biochem J. 1954 Jan;56(1):171–175. doi: 10.1042/bj0560171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gurr M. I., Brindley D. N., Hübscher G. Metabolism of phospholipids. 8. Biosynthesis of phosphatidylcholine in the intestinal mucosa. Biochim Biophys Acta. 1965 Jun 1;98(3):486–501. doi: 10.1016/0005-2760(65)90145-1. [DOI] [PubMed] [Google Scholar]
  14. HIATT H. H. Studies of ribose metabolism. II. A method for the study of ribose synthesis in vivo. J Biol Chem. 1957 Dec;229(2):725–730. [PubMed] [Google Scholar]
  15. HORECKER B. L., SMYRNIOTIS P. Z., KLENOW H. The formation of sedoheptulose phosphate. J Biol Chem. 1953 Dec;205(2):661–682. [PubMed] [Google Scholar]
  16. Hübscher G., West G. R., Brindley D. N. Studies on the fractionation of mucosal homogenates from the small intestine. Biochem J. 1965 Dec;97(3):629–642. doi: 10.1042/bj0970629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LANDAU B. R., WILSON T. H. The role of phosphorylation in glucose absorption from the intestine of the golden hamster. J Biol Chem. 1959 Apr;234(4):749–753. [PubMed] [Google Scholar]
  18. LANG K., HARTMANN K. U. Phosphoribomutase- und 5-Phosphoriboisomerase-Aktivität in isolierten Zellkernen. Experientia. 1958 Apr 15;14(4):130–131. doi: 10.1007/BF02157113. [DOI] [PubMed] [Google Scholar]
  19. MARKS P. A., FEIGELSON P. The biosynthesis of nucleic acid ribose and of glycogen glucose in the rat. J Biol Chem. 1957 Jun;226(2):1001–1010. [PubMed] [Google Scholar]
  20. McLEAN P. Carbohydrate metabolism of mammary tissue. I. Pathways of glucose catabolism in the mammary gland. Biochim Biophys Acta. 1958 Nov;30(2):303–315. doi: 10.1016/0006-3002(58)90055-6. [DOI] [PubMed] [Google Scholar]
  21. NEWBURGH R. W., CHELDELIN V. H. The intracellular distribution of pentose cycle activity in rabbit kidney and liver. J Biol Chem. 1956 Jan;218(1):89–96. [PubMed] [Google Scholar]
  22. NIGAM V. N., SIE H. G., FISHMAN W. H. Distribution in nature of heptulose-phosphate-forming systems. Can J Biochem Physiol. 1961 Sep;39:1367–1372. doi: 10.1139/o61-145. [DOI] [PubMed] [Google Scholar]
  23. PONTREMOLI S., BONSIGNORE A., GRAZI E., HORECKER B. L. A coupled reaction catalyzed by the enzymes transketolase and transaldolase. J Biol Chem. 1960 Jul;235:1881–1887. [PubMed] [Google Scholar]
  24. SCHAPIRA F. [Fructose-1-phosphoaldolase activity of mammalian tissues. I. Distribution of fructose-1-phosphoaldolase activity in mammalian tissues]. Bull Soc Chim Biol (Paris) 1961;43:1357–1365. [PubMed] [Google Scholar]
  25. SENIOR J. R., ISSELBACHER K. J. Activation of long-chain fatty acids by rat-gut mucosa. Biochim Biophys Acta. 1960 Nov 4;44:399–400. doi: 10.1016/0006-3002(60)91594-8. [DOI] [PubMed] [Google Scholar]
  26. SHUSTER L., GOLDIN A. The conversion of glucose to pentose in the biosynthesis of mouse liver diphosphopyridine nucleotide. J Biol Chem. 1958 Feb;230(2):883–888. [PubMed] [Google Scholar]
  27. Srivastava L. M., Hübscher G. Glucose metabolism in the mucosa of the small intestine. Glycolysis in subcellular preparations from the cat and rat. Biochem J. 1966 Aug;100(2):458–466. doi: 10.1042/bj1000458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taketa K., Pogell B. M. The effect of palmityl coenzyme A on glucose 6-phosphate dehydrogenase and other enzymes. J Biol Chem. 1966 Feb 10;241(3):720–726. [PubMed] [Google Scholar]
  29. VENKATARAMAN R., RACKER E. Mechanism of action of transaldolase. I. Crystalization and properties of yeast enzyme. J Biol Chem. 1961 Jul;236:1876–1882. [PubMed] [Google Scholar]
  30. WHITE L. W., LANDAU B. R. SUGAR TRANSPORT AND FRUCTOSE METABOLISM IN HUMAN INTESTINE IN VITRO. J Clin Invest. 1965 Jul;44:1200–1213. doi: 10.1172/JCI105226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WIELAND O., WEISS L., EGER-NEUFELDT I. HEMMUNG DER ENZYMATISCHEN CITRONENSAEURESYNTHESE DURCH LANGKETTIGE ACYL-THIOESTER DES COENZYM A. Biochem Z. 1964 Jun 16;339:501–513. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES