Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 Dec;101(3):647–650. doi: 10.1042/bj1010647

The deoxyribonucleic acid of Micrococcus radiodurans

Arnold H Schein 1
PMCID: PMC1270167  PMID: 16742439

Abstract

The DNA of Micrococcus radiodurans was prepared by three methods. Although the recovery of DNA varied considerably, the percentage molar base ratios of the DNA from the three preparations were essentially the same: guanine, 33±2; adenine, 18±1; cytosine, 33±2; thymine, 17±1. Base compositions calculated from Tm values and from density in caesium chloride gradients also yielded guanine+cytosine contents of 66 and 68% of total bases respectively. No unusual bases were observed. The S20,w values were characteristic of high-molecular-weight DNA. Electron microscopy showed the purified DNA in long strands; occasionally these were coiled.

Full text

PDF
649

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. KLEINSCHMIDT A. K., LANG D., JACHERTS D., ZAHN R. K. [Preparation and length measurements of the total desoxyribonucleic acid content of T2 bacteriophages]. Biochim Biophys Acta. 1962 Dec 31;61:857–864. [PubMed] [Google Scholar]
  4. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  5. MOSELEY B. E., SCHEIN A. H. RADIATION RESISTANCE AND DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF MICROCOCCUS RADIODURANS. Nature. 1964 Sep 19;203:1298–1299. doi: 10.1038/2031298a0. [DOI] [PubMed] [Google Scholar]
  6. Moseley B. E., Laser H. Similarity of repair of ionizing and ultra-violet radiation damage in Micrococcus radiodurans. Nature. 1965 Apr 24;206(982):373–375. doi: 10.1038/206373a0. [DOI] [PubMed] [Google Scholar]
  7. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  8. SETLOW J. K., DUGGAN D. E. THE RESISTANCE OF MICROCOCCUS RADIODURANS TO ULTRAVIOLET RADIATION. I. ULTRAVIOLET-INDUCED LESIONS IN THE CELL'S DNA. Biochim Biophys Acta. 1964 Aug 12;87:664–668. doi: 10.1016/0926-6550(64)90284-1. [DOI] [PubMed] [Google Scholar]
  9. Schein A. H. Uracil in formic acid hydrolysates of deoxyribonucleic acid. Biochem J. 1966 Jan;98(1):311–316. doi: 10.1042/bj0980311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. YOUNG E. T., 2nd, SINSHEIMER R. L. A COMPARISON OF THE INITIAL ACTIONS OF SPLEEN DEOXYRIBONUCLEASE AND PANCREATIC DEOXYRIBONUCLEASE. J Biol Chem. 1965 Mar;240:1274–1280. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES