Abstract
1. The intermediary metabolism of two strains of Escherichia coli has been examined. One strain (Q22) exhibits acute transient repression of β-galactosidase synthesis when glucose is supplied to cells growing on glycerol; the other strain (W3110) does not. The two strains do not differ genetically in their lac operons. 2. Strain Q22 uses about twice as much glucose as strain W3110 per unit of cell mass produced. 3. Pentose phosphate-cycle activity in the presence of glucose is much stronger in strain Q22 than in strain W3110. 4. In strain Q22 the pool sizes of glucose 6-phosphate, 6-phosphogluconate, fructose 1,6-diphosphate and NADPH increase when glucose is added to cells growing on glycerol, and β-galactosidase synthesis is severely inhibited. After about 1hr. the synthesis of β-galactosidase is partly resumed, and the pool sizes of the four compounds fall. ATP, NADH and several other phosphorylated compounds show no concentration changes. 5. These concentration changes do not occur in strain W3110, in which β-galactosidase synthesis is only rather weakly repressed by glucose. 6. It is suggested that repression of enzyme synthesis by glucose requires the rapid operation of the pentose phosphate cycle, and is mediated by one of the four substances whose concentration rises and later falls in strain Q22. A definite choice of effector from among these four possibilities cannot at present be made.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CLARK D. J., MARR A. G. STUDIES ON THE REPRESSION OF BETA-GALACTOSIDASE IN ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Oct 23;92:85–94. doi: 10.1016/0926-6569(64)90272-x. [DOI] [PubMed] [Google Scholar]
- COHN M., HORIBATA K. Physiology of the inhibition by glucose of the induced synthesis of the beta-galactosideenzyme system of Escherichia coli. J Bacteriol. 1959 Nov;78:624–635. doi: 10.1128/jb.78.5.624-635.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOBROGOSZ W. J. THE INFLUENCE OF NITRATE AND NITRITE REDUCTION ON CATABOLITE REPRESSION IN ESCHERICHIA COLI. Biochim Biophys Acta. 1965 May 4;100:553–566. doi: 10.1016/0304-4165(65)90025-5. [DOI] [PubMed] [Google Scholar]
- DUERRE J. A., RIBI E. ENZYMES RELEASED FROM ESCHERICHIA COLI WITH THE AID OF A SERVALL CELL FRACTIONATOR. Appl Microbiol. 1963 Nov;11:467–471. doi: 10.1128/am.11.6.467-471.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobrogosz W. J. Altered end-product patterns and catabolite repression in Escherichia coli. J Bacteriol. 1966 Jun;91(6):2263–2269. doi: 10.1128/jb.91.6.2263-2269.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ESTABROOK R. W., MAITRA P. K., SCOTT D. B. Pyridine nucleotide reduction associated with glucose metabolism by Escherichia coli. Biochim Biophys Acta. 1962 Jan 1;56:181–183. doi: 10.1016/0006-3002(62)90547-4. [DOI] [PubMed] [Google Scholar]
- FAITH W. T., Jr, GIORGIO N. A., Jr, MALLETTE M. F. MECHANISM OF GLUCOSE INHIBITION OF BETA-GALACTOSIDASE BIOSYNTHESIS IN RESTING CULTURES OF ESCHERICHIA COLI. Arch Biochem Biophys. 1964 Dec;108:430–439. doi: 10.1016/0003-9861(64)90424-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., PASSONNEAU J. V., ROCK M. K. The stability of pyridine nucleotides. J Biol Chem. 1961 Oct;236:2756–2759. [PubMed] [Google Scholar]
- Loomis W. F., Jr, Magasanik B. Genetic control of catabolite repression of the lac operon in Escherichia coli. Biochem Biophys Res Commun. 1965 Jul 12;20(2):230–234. doi: 10.1016/0006-291x(65)90351-7. [DOI] [PubMed] [Google Scholar]
- Loomis W. F., Jr, Magasanik B. Nature of the effector of catabolite repression of beta-galactosidase in Escherichia coli. J Bacteriol. 1966 Jul;92(1):170–177. doi: 10.1128/jb.92.1.170-177.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
- MANDELSTAM J. Induction and repression of beta-galactosidase in non-growing Escherichia coli. Biochem J. 1961 Jun;79:489–496. doi: 10.1042/bj0790489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOSES V., LONBERG-HOLM K. K. A semiautomatic device for measuring radioactivity on two-dimensional paper chromatograms. Anal Biochem. 1963 Jan;5:11–27. doi: 10.1016/0003-2697(63)90053-8. [DOI] [PubMed] [Google Scholar]
- MOSES V., SMITH M. J. Uncoupling reagents and metabolism. 2. Effects of 2:4-dinitrophenol and salicylate on glucose metabolism in baker's yeast. Biochem J. 1960 Sep;76:585–594. doi: 10.1042/bj0760585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOSES V. [14C] Glucose metabolism in fungal cells. J Gen Microbiol. 1959 Apr;20(2):184–196. doi: 10.1099/00221287-20-2-184. [DOI] [PubMed] [Google Scholar]
- Model P., Rittenberg D. Measurement of the activity of the hexose monophosphate pathway of glucose metabolism with the use of [18O]glucose. Variations in its activity in Escherichia coli with growth conditions. Biochemistry. 1967 Jan;6(1):69–80. doi: 10.1021/bi00853a013. [DOI] [PubMed] [Google Scholar]
- Moses V., Lonberg-Holm K. K. The study of metabolic compartmentalization. J Theor Biol. 1966 Feb;10(2):336–351. doi: 10.1016/0022-5193(66)90131-7. [DOI] [PubMed] [Google Scholar]
- Moses V., Prevost C. Catabolite repression of beta-galactosidase synthesis in Escherichia coli. Biochem J. 1966 Aug;100(2):336–353. doi: 10.1042/bj1000336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKADA D., MAGASANIK B. THE ROLES OF INDUCER AND CATABOLITE REPRESSOR IN THE SYNTHESIS OF BETA-GALACTOSIDASE BY ESCHERICHIA COLI. J Mol Biol. 1964 Jan;8:105–127. doi: 10.1016/s0022-2836(64)80153-4. [DOI] [PubMed] [Google Scholar]
- NEIDHARDT F. C. Mutant of Aerobacter aerogenes lacking glucose repression. J Bacteriol. 1960 Oct;80:536–543. doi: 10.1128/jb.80.4.536-543.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PUTMAN W. E., HASSID W. Z. Isolation and purification of radioactive sugars by means of paper chromatography. J Biol Chem. 1952 May;196(2):749–752. [PubMed] [Google Scholar]
- Paigen K. Phenomenon of transient repression in Escherichia coli. J Bacteriol. 1966 Mar;91(3):1201–1209. doi: 10.1128/jb.91.3.1201-1209.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J., Moses V. Involvement of the lac regulatory genes in catabolite repression in Escherichia coli. Biochem J. 1967 May;103(2):358–366. doi: 10.1042/bj1030358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SELLS B. H. PUROMYCIN: EFFECT ON MESSENGER RNA SYNTHESIS AND BETA-GALACTOSIDASE FORMATION IN ESCHERICHIA COLI 15T. Science. 1965 Apr 16;148(3668):371–373. doi: 10.1126/science.148.3668.371. [DOI] [PubMed] [Google Scholar]
- SYPHERD P. S., STRAUSS N. THE ROLE OF RNA IN REPRESSION OF ENZYME SYNTHESIS. Proc Natl Acad Sci U S A. 1963 Dec;50:1059–1066. doi: 10.1073/pnas.50.6.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOD W. A., SCHWERDT R. F. Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation. J Biol Chem. 1953 Apr;201(2):501–511. [PubMed] [Google Scholar]
