Abstract
1. Fatty acid synthesis from [2-14C]acetate by Chlorella vulgaris cells grown and incubated in the dark is limited almost entirely to the production of saturated and monoenoic acids. 2. In light-incubated cells, both saturated and polyunsaturated fatty acids are rapidly synthesized. 3. Two groups of lipids can be distinguished in both dark- and light-incubated cells. The first group, consisting of phosphatidyl-glycerol, monogalactosyl diglyceride, lecithin and neutral glyceride, has a very high turnover rate for certain fatty acids. The second group, consisting of digalactosyl diglyceride, sulpholipid, phosphatidylethanolamine and phosphatidylinositol, has a slow turnover of fatty acids. 4. The lipids with rapid fatty acid turnover may be involved in the sequences of saturated and unsaturated fatty acid synthesis. A classification of lipids is made on the basis of their suggested functions.
Full text
PDF![486](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/9b81ecec3bf7/biochemj00740-0173.png)
![487](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/07ce42d25e76/biochemj00740-0174.png)
![488](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/5284b833ec00/biochemj00740-0175.png)
![489](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/f03b240e701a/biochemj00740-0176.png)
![490](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/394867503918/biochemj00740-0177.png)
![491](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/a137046c571a/biochemj00740-0178.png)
![492](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/1e6db03990a8/biochemj00740-0179.png)
![493](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/bb13343cfffb/biochemj00740-0180.png)
![494](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/68e27edb0a95/biochemj00740-0181.png)
![495](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/1a6df12baa6e/biochemj00740-0182.png)
![496](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3311/1270610/02ad36f2ec05/biochemj00740-0183.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen C. F., Good P., Davis H. F., Fowler S. D. Plant and chloroplast lipids. I. Separation and composition of major spinach lipids. Biochem Biophys Res Commun. 1964 Apr 22;15(5):424–430. doi: 10.1016/0006-291x(64)90479-6. [DOI] [PubMed] [Google Scholar]
- FERRARI R. A., BENSON A. A. The path of carbon in photosynthesis of the lipids. Arch Biochem Biophys. 1961 May;93:185–192. doi: 10.1016/0003-9861(61)90248-x. [DOI] [PubMed] [Google Scholar]
- Harris R. V., James A. T. Linoleic and alpha-linolenic acid biosynthesis in plant leaves and green alga. Biochim Biophys Acta. 1965 Dec 2;106(3):456–464. doi: 10.1016/0005-2760(65)90062-7. [DOI] [PubMed] [Google Scholar]
- Harris R. V., James A. T. The fatty acid metabolism of Chlorella vulgaris. Biochim Biophys Acta. 1965 Dec 2;106(3):465–473. doi: 10.1016/0005-2760(65)90063-9. [DOI] [PubMed] [Google Scholar]
- Miyachi S., Miyachi S. Sulfolipid metabolism in chlorella. Plant Physiol. 1966 Mar;41(3):479–486. doi: 10.1104/pp.41.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulder E., van Deenen L. L. Metabolism of red-cell lipids. I. Incorporation in vitro of fatty acids into phospholipids from mature erythrocytes. Biochim Biophys Acta. 1965 Jul 7;106(1):106–117. doi: 10.1016/0005-2760(65)90099-8. [DOI] [PubMed] [Google Scholar]
- Nagai J., Bloch K. Enzymatic desaturation of stearyl acyl carrier protein. J Biol Chem. 1966 Apr 25;241(8):1925–1927. [PubMed] [Google Scholar]
- Nichols B. W., Harris P., James A. T. The biosynthesis of trans-delta-3-hexadecenoic acid by chlorella vulgaris. Biochem Biophys Res Commun. 1965 Dec 9;21(5):473–479. doi: 10.1016/0006-291x(65)90407-9. [DOI] [PubMed] [Google Scholar]
- Nichols B. W. Light induced changes in the lipids of Chlorella vulgaris. Biochim Biophys Acta. 1965 Oct 4;106(2):274–279. doi: 10.1016/0005-2760(65)90035-4. [DOI] [PubMed] [Google Scholar]
- Sastry P. S., Kates M. Biosynthesis of lipids in plants. I. Incorporation of orthophosphate-32P and glycerophosphate-32P into phosphatides of Chlorella vulgaris during photosynthesis. Can J Biochem. 1965 Sep;43(9):1445–1453. doi: 10.1139/o65-162. [DOI] [PubMed] [Google Scholar]
- Vagelos P. R., Alberts A. W., Majerus P. W. The mechanism of fatty acid biosynthesis and the involvement of an acyl carrier protein. Ann N Y Acad Sci. 1965 Oct 8;131(1):177–188. doi: 10.1111/j.1749-6632.1965.tb34787.x. [DOI] [PubMed] [Google Scholar]
- WEENINK R. O., SHORLAND F. B. THE ISOLATION OF TRANS-3-HEXADECENOIC ACID FROM THE LIPIDS OF RED-CLOVER (TRIFOLIUM PRATENSE) LEAVES. Biochim Biophys Acta. 1964 Oct 2;84:613–614. doi: 10.1016/0926-6542(64)90133-7. [DOI] [PubMed] [Google Scholar]