Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980;308:185–195. doi: 10.1113/jphysiol.1980.sp013467

The uptake and release of [3H]glycine in the goldfish retina.

C A Chin, D M Lam
PMCID: PMC1274544  PMID: 7230015

Abstract

1. In the goldfish retina, uptake of exogenous [3H]glycine follows Michaelis--Menten kinetics with increasing concentrations of glycine. This uptake can be explained kinetically by the presence of two independent affinity systems: a 'high-affinity' mechanism with an apparent Km(H) of 8.1 microM and a Vmax(H) of 9.12 p-moles/min. mg protein, and a 'low-affinity' mechanism with an apparent Km(L) of 0.63 mM and a Vmax(L) of 430 p-mole/min . mg protein. 2. The high-affinity mechanism, and probably also the low-affinity mechanism, is temperature- and Na+-dependent. 3. The low-affinity mechanism for glycine uptake is not affected by 5 mM-isoleucine, methionine and valine in the medium. However, it is inhibited more than 90% by 5 mM-alanine, proline and serine in the medium. This result indicates that the low-affinity transport for glycine may go through system A of the neutral amino acid transport system which is present in most tissues to transport glycine and certain neutral amino acids for metabolic purposes. 4. The high-affinity mechanism for glycine uptake is, however, not affected by the presence of up to 100-fold excess of all amino acids examined. 5. Autoradiographic studies show that at least one type of amacrine cell and one type of probable interplexiform cell take up [3H]glycine both in the presence and absence of 5 mM-alanaine, proline and serine, indicating that these neurones possess the high-affinity mechanism for glycine uptake. 6. [3H]Glycine accumulated in the retina can be released by increasing the external K+ concentration. This release is probably Ca2+-dependent since it is blocked by 10 mM-Co2+ in the medium. Additionally, autoradiographic studies show that [3H]glycine taken up by the glycine-accumulating neurones can also be released by Ca2+-dependent, K+-depolarization of the retina.

Full text

PDF
190

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames A., 3rd, Pollen D. A. Neurotransmission in central nervous tissue: a study of isolated rabbit retina. J Neurophysiol. 1969 May;32(3):424–442. doi: 10.1152/jn.1969.32.3.424. [DOI] [PubMed] [Google Scholar]
  2. Baughman R. W., Bader C. R. Biochemical characterization and cellular localization of the cholinergic system in the chicken retina. Brain Res. 1977 Dec 23;138(3):469–485. doi: 10.1016/0006-8993(77)90684-9. [DOI] [PubMed] [Google Scholar]
  3. Bruun A., Ehinger B. Uptake of the putative neurotransmitter, glycine, into the rabbit retina. Invest Ophthalmol. 1972 Apr;11(4):191–198. [PubMed] [Google Scholar]
  4. Caldwell J. H., Daw N. W. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: changes in centre surround receptive fields. J Physiol. 1978 Mar;276:299–310. doi: 10.1113/jphysiol.1978.sp012234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caldwell J. H., Daw N. W., Wyatt H. J. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol. 1978 Mar;276:277–298. doi: 10.1113/jphysiol.1978.sp012233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dowling J. E., Ehinger B. The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proc R Soc Lond B Biol Sci. 1978 Apr 13;201(1142):7–26. doi: 10.1098/rspb.1978.0030. [DOI] [PubMed] [Google Scholar]
  7. Ehinger B., Lindberg-Bauer B. Light-evoked release of glycine from cat and rabbit retina. Brain Res. 1976 Sep 3;113(3):535–549. doi: 10.1016/0006-8993(76)90055-x. [DOI] [PubMed] [Google Scholar]
  8. Inui Y., Christensen H. N. Discrimination of single transport systems. The Na plus-sensitive transport of neutral amino acids in the Ehrlich cell. J Gen Physiol. 1966 Sep;50(1):203–224. doi: 10.1085/jgp.50.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iversen L. L., Bloom F. E. Studies of the uptake of 3 H-gaba and ( 3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 1972 Jun 8;41(1):131–143. doi: 10.1016/0006-8993(72)90621-x. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lam D. M., Lasater E. M., Naka K. I. gamma-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6310–6313. doi: 10.1073/pnas.75.12.6310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lam D. M., Steinman L. The uptake of ( - 3 H) aminobutyric acid in the goldfish retina. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2777–2781. doi: 10.1073/pnas.68.11.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lam D. M., Su Y. Y., Swain L., Marc R. E., Brandon C., Wu J. Y. Immunocytochemical localisation of L-glutamic acid decarboxylase in the goldfish retina. Nature. 1979 Apr 5;278(5704):565–567. doi: 10.1038/278565a0. [DOI] [PubMed] [Google Scholar]
  14. Lam D. M. Synaptic chemistry of identified cells in the vertebrate retina. Cold Spring Harb Symp Quant Biol. 1976;40:571–579. doi: 10.1101/sqb.1976.040.01.053. [DOI] [PubMed] [Google Scholar]
  15. Lam D. M. The biosynthesis and content of gamma-aminobutyric acid in the goldifsh retina. J Cell Biol. 1972 Aug;54(2):225–231. doi: 10.1083/jcb.54.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marc R. E., Stell W. K., Bok D., Lam D. M. GABA-ergic pathways in the goldfish retina. J Comp Neurol. 1978 Nov 15;182(2):221–244. doi: 10.1002/cne.901820204. [DOI] [PubMed] [Google Scholar]
  17. McAdoo D. J., Iliffe T. M., Price C. H., Novak R. A. Specific glycine uptake by identified neurons of Aplysia californica. II. Biochemistry. Brain Res. 1978 Oct 6;154(1):41–51. doi: 10.1016/0006-8993(78)91049-1. [DOI] [PubMed] [Google Scholar]
  18. Miller R. F., Dacheux R. F., Frumkes T. E. Amacrine cells in Necturus retina: evidence for independent gamma-aminobutyric acid- and glycine-releasing neurons. Science. 1977 Nov 18;198(4318):748–750. doi: 10.1126/science.910159. [DOI] [PubMed] [Google Scholar]
  19. Neal M. J., Gilroy J. High-affinity choline transport in the isolated retina. Brain Res. 1975 Aug 15;93(3):548–551. doi: 10.1016/0006-8993(75)90197-3. [DOI] [PubMed] [Google Scholar]
  20. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  21. Price C. H., Coggeshall R. E., McAdoo D. Specific glycine uptake by identified neurons of Aplysia californica. I. Autoradiography. Brain Res. 1978 Oct 6;154(1):25–40. doi: 10.1016/0006-8993(78)91048-x. [DOI] [PubMed] [Google Scholar]
  22. Price D. L., Stocks A., Griffin J. W., Young A., Peck K. Glycine-specific synapses in rat spinal cord. Identification by electron microscope autoradiography. J Cell Biol. 1976 Feb;68(2):389–395. doi: 10.1083/jcb.68.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sarthy P. V., Lam D. M. The uptake and release of [3H]dopamine in the goldfish retina. J Neurochem. 1979 Apr;32(4):1269–1277. doi: 10.1111/j.1471-4159.1979.tb11054.x. [DOI] [PubMed] [Google Scholar]
  24. Sepúlveda F. V., Smith M. W. Discrimination between different entry mechanisms for neutral amino acids in rabbit ileal mucosa. J Physiol. 1978 Sep;282:73–90. doi: 10.1113/jphysiol.1978.sp012449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Voaden M. J. Light and the spontaneous efflux of radioactive glycine from the frog retina. Exp Eye Res. 1974 May;18(5):467–475. doi: 10.1016/0014-4835(74)90083-9. [DOI] [PubMed] [Google Scholar]
  26. Voaden M. J., Marshall J., Murani N. The uptake of [3H]gamma-amino butyric acid and [3H]glycine by the isolated retina of the frog. Brain Res. 1974 Feb 15;67(1):115–132. doi: 10.1016/0006-8993(74)90302-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES