Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Jan;310:13–35. doi: 10.1113/jphysiol.1981.sp013535

Beta-bungarotoxin stimulates the synthesis and accumulation of acetylcholine in rat phrenic nerve diaphragm preparations.

C B Gundersen, D J Jenden, M W Newton
PMCID: PMC1274726  PMID: 7230031

Abstract

1. The effects of beta-bungarotoxin on acetylcholine (ACh) synthesis, tissue content and release have been studied in the rat diaphragm. A gas chromatographic mass spectrometric assay was used to measure ACh and choline. 2. Within 30 min, beta-bungarotoxin (0.14 or 1.4 micrograms/ml.) caused a significant increase in tissue ACh content. This increase was apparent prior to the final inhibition by beta-bungarotoxin of evoked (10 Hz) ACh release. 3. The toxin enhanced the incorporation of [2H4]Ch into [2H4]ACh in both resting and stimulated preparations. 4. Hemicholinium-3 blocked the rise in diaphragm ACh normally produced by beta-bungarotoxin. 5. Beta-Bungarotoxin did not directly activate choline acetyltransferase in muscle homogenates. 6. The toxin-induced rise in tissue ACh was largely absent in Ca2+-free solutions which contained either EGTA (1 mM) or SrCl2 (2 or 10 mM). 7. Non-neurotoxic phospholipases A2, fatty acids and the neurotoxic phospholipase A2, notexin, did not cause ACh accumulation in the diaphragm. 8. Beta-Bungarotoxin did not stimulate ACh synthesis in denervated muscle. 9. The extra ACh which accumulated after beta-bungarotoxin did not contribute to enhanced release by nerve impulses even when 4-aminopyridine was added to the medium. High K+ solution and black widow spider venom were also ineffective in increasing output from toxin-treated diaphragms relative to controls that had not been treated with beta-bungarotoxin. 10. Prior injection of a rat with botulinum toxin prevented the accumulation of ACh due to beta-bungarotoxin. Tubocurarine, however, did not antagonize beta-bungarotoxin. 11. These data indicate that beta-bungarotoxin has a unique capacity to inhibit ACh release and stimulate ACh synthesis in diaphragm nerve endings. The results are discussed in terms of a possible action of beta-bungarotoxin to raise the level of ionized Ca in the nerve terminal cytosol.

Full text

PDF
16

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Alemá S., Miledi R. Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. Eur J Biochem. 1977 Oct 17;80(1):1–12. doi: 10.1111/j.1432-1033.1977.tb11849.x. [DOI] [PubMed] [Google Scholar]
  2. Abe T., Limbrick A. R., Miledi R. Acute muscle denervation induced by beta-bungarotoxin. Proc R Soc Lond B Biol Sci. 1976 Nov 12;194(1117):545–553. doi: 10.1098/rspb.1976.0093. [DOI] [PubMed] [Google Scholar]
  3. Binah O., Meiri U., Rahamimoff H. The effects of HGCl2 and mersalyl on mechanisms regulating intracellular calcium and transmitter release. Eur J Pharmacol. 1978 Oct 15;51(4):453–457. doi: 10.1016/0014-2999(78)90438-7. [DOI] [PubMed] [Google Scholar]
  4. Birks R. I., Cohen M. W. The action of sodium pump inhibitors on neuromuscular transmission. Proc R Soc Lond B Biol Sci. 1968 Jul 9;170(1021):381–399. doi: 10.1098/rspb.1968.0046. [DOI] [PubMed] [Google Scholar]
  5. Birks R. I., Fitch J. G. Storage and release of acetylcholine in a sympathetic ganglion. J Physiol. 1974 Jul;240(1):125–134. doi: 10.1113/jphysiol.1974.sp010603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bourdois P. S., McCandless D. L., MacIntosh F. C. A prolonged after-effect of intense synaptic activity on acetylcholine in a sympathetic ganglion. Can J Physiol Pharmacol. 1975 Feb;53(1):155–165. doi: 10.1139/y75-022. [DOI] [PubMed] [Google Scholar]
  7. CHANG C. C., LEE C. Y. ISOLATION OF NEUROTOXINS FROM THE VENOM OF BUNGARUS MULTICINCTUS AND THEIR MODES OF NEUROMUSCULAR BLOCKING ACTION. Arch Int Pharmacodyn Ther. 1963 Jul 1;144:241–257. [PubMed] [Google Scholar]
  8. Chang C. C., Chen T. F., Lee C. Y. Studies of the presynaptic effect of -bungarotoxin on neuromuscular transmission. J Pharmacol Exp Ther. 1973 Feb;184(2):339–345. [PubMed] [Google Scholar]
  9. Chang C. C., Chuang S. T., Huang M. C. Effects of chronic treatment with various neuromuscular blocking agents on the number and distribution of acetylcholine receptors in the rat diaphragm. J Physiol. 1975 Aug;250(1):161–173. doi: 10.1113/jphysiol.1975.sp011047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chang C. C., Su M. J., Lee J. D., Eaker D. Effects of Sr2+ and Mg2+ on the phospholipase A and the presynaptic neuromuscular blocking actions of beta-bungarotoxin, crotoxin and taipoxin. Naunyn Schmiedebergs Arch Pharmacol. 1977 Sep;299(2):155–161. doi: 10.1007/BF00498557. [DOI] [PubMed] [Google Scholar]
  11. Dodge F. A., Jr, Miledi R., Rahamimoff R. Strontium and quantal release of transmitter at the neuromuscular junction. J Physiol. 1969 Jan;200(1):267–283. doi: 10.1113/jphysiol.1969.sp008692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dowdall M. J., Fohlman J. P., Watts A. Presynaptic action of snake venom neurotoxins on cholinergic systems. Adv Cytopharmacol. 1979;3:63–76. [PubMed] [Google Scholar]
  13. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  14. Freeman J. J., Choi R. L., Jenden D. J. Plasma choline: its turnover and exchange with brain choline. J Neurochem. 1975 Apr;24(4):729–734. [PubMed] [Google Scholar]
  15. Goldberg A. M., McCaman R. E. The determination of picomole amounts of acetylcholine in mammalian brain. J Neurochem. 1973 Jan;20(1):1–8. doi: 10.1111/j.1471-4159.1973.tb12097.x. [DOI] [PubMed] [Google Scholar]
  16. Gundersen C. B., Newton M. W., Jenden D. J. beta-Bungarotoxin elevates diaphragm acetylcholine levels. Brain Res. 1980 Jan 27;182(2):486–490. doi: 10.1016/0006-8993(80)91210-x. [DOI] [PubMed] [Google Scholar]
  17. Gutmann E. Neurotrophic relations. Annu Rev Physiol. 1976;38:177–216. doi: 10.1146/annurev.ph.38.030176.001141. [DOI] [PubMed] [Google Scholar]
  18. HEBB C. O., KRNJEVIC K., SILVER A. ACETYLCHOLINE AND CHOLINE ACETYLTRANSFERASE IN THE DIAPHRAGM OF THE RAT. J Physiol. 1964 Jun;171:504–513. doi: 10.1113/jphysiol.1964.sp007393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Halpert J., Eaker D., Karlsson E. The role of phospholipase activity in the action of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). FEBS Lett. 1976 Jan 1;61(1):72–76. doi: 10.1016/0014-5793(76)80174-3. [DOI] [PubMed] [Google Scholar]
  20. Harris A. J., Miledi R. The effect of type D botulinum toxin on frog neuromuscular junctions. J Physiol. 1971 Sep;217(2):497–515. doi: 10.1113/jphysiol.1971.sp009582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Harris J. B., Karlsson E., Thesleff S. Effects of an isolated toxin from Australian tiger snake (Notechis scutatus scutatus) venom at the mammalian neuromuscular junction. Br J Pharmacol. 1973 Jan;47(1):141–146. doi: 10.1111/j.1476-5381.1973.tb08168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jenden D. J., Roch M., Booth R. A. Simultaneous measurement of endogenous and deuterium-labeled tracer variants of choline and acetylcholine in subpicomole quantities by gas chromatography-mass spectrometry. Anal Biochem. 1973 Oct;55(2):438–448. doi: 10.1016/0003-2697(73)90134-6. [DOI] [PubMed] [Google Scholar]
  23. Kao I., Drachman D. B., Price D. L. Botulinum toxin: mechanism of presynaptic blockade. Science. 1976 Sep 24;193(4259):1256–1258. doi: 10.1126/science.785600. [DOI] [PubMed] [Google Scholar]
  24. Kelly R. B., Brown F. R., 3rd Biochemical and physiological properties of a purified snake venom neurotoxin which acts presynaptically. J Neurobiol. 1974;5(2):135–150. doi: 10.1002/neu.480050205. [DOI] [PubMed] [Google Scholar]
  25. Kelly R. B., von Wedel R. J., Strong P. N. Phospholipase-dependent and phospholipase-independent inhibition of transmitter relase by beta-bungarotoxin. Adv Cytopharmacol. 1979;3:77–85. [PubMed] [Google Scholar]
  26. Kita H., Van Der Kloot W. Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction. J Physiol. 1976 Jul;259(1):177–198. doi: 10.1113/jphysiol.1976.sp011460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kondo K., Toda H., Narita K. Characterization of phospholipase A activity of beta1-bungarotoxin from Bungarus multicinctus venom. I. Its enzymatic properties and modification with p-bromophenacyl bromide. J Biochem. 1978 Nov;84(5):1291–1300. doi: 10.1093/oxfordjournals.jbchem.a132248. [DOI] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Lau Y. H., Chiu T. H., Caswell A. H., Potter Effects of beta-bungarotoxin on calcium uptake by sarcoplasmic reticulum from rabbit skeletal muscle. Biochem Biophys Res Commun. 1974 Nov 27;61(2):510–516. doi: 10.1016/0006-291x(74)90986-3. [DOI] [PubMed] [Google Scholar]
  30. Lundh H., Leander S., Thesleff S. Antagonism of the paralysis produced by botulinum toxin in the rat. The effects of tetraethylammonium, guanidine and 4-aminopyridine. J Neurol Sci. 1977 May;32(1):29–43. doi: 10.1016/0022-510x(77)90037-5. [DOI] [PubMed] [Google Scholar]
  31. Magazanik L. G., Slavnova T. I. Effects of presynaptic polypeptide neurotoxins from tiger snake venom (notechis-II-5 and notexin) on frog neuromuscular junction. Physiol Bohemoslov. 1978;27(5):421–429. [PubMed] [Google Scholar]
  32. Mitchell J. F., Silver A. The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J Physiol. 1963 Jan;165(1):117–129. doi: 10.1113/jphysiol.1963.sp007046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ng R. H., Howard B. D. Deenergization of nerve terminals by beta-bungarotoxin. Biochemistry. 1978 Nov 14;17(23):4978–4986. doi: 10.1021/bi00616a019. [DOI] [PubMed] [Google Scholar]
  34. Oberg S. G., Kelly R. B. The mechanism of beta-bungarotoxin action. I. Modification of transmitter release at the neuromuscular junction. J Neurobiol. 1976 Mar;7(2):129–141. doi: 10.1002/neu.480070206. [DOI] [PubMed] [Google Scholar]
  35. Potter L. T. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol. 1970 Jan;206(1):145–166. doi: 10.1113/jphysiol.1970.sp009003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pumplin D. W., del Castillo J. Release of packets of acetylcholine and synaptic vesicle elicited by brown widow spider venom in frog motor nerve endings poisoned by botulinum toxin. Life Sci. 1975 Jul 1;17(1):137–141. doi: 10.1016/0024-3205(75)90249-0. [DOI] [PubMed] [Google Scholar]
  37. Sen I., Cooper J. R. Similarities of beta-bungarotoxin and phospholipase A2 and their mechanism of action. J Neurochem. 1978 Jun;30(6):1369–1372. doi: 10.1111/j.1471-4159.1978.tb10468.x. [DOI] [PubMed] [Google Scholar]
  38. Sen I., Grantham P. A., Cooper J. R. Mechanism of action of beta-bungarotoxin on synaptosomal preparations. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2664–2668. doi: 10.1073/pnas.73.8.2664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Simpson L. L. Pharmacological studies on the subcellular site of action of botulinum toxin type A. J Pharmacol Exp Ther. 1978 Sep;206(3):661–669. [PubMed] [Google Scholar]
  40. Strong P. N., Goerke J., Oberg S. G., Kelly R. B. beta-Bungarotoxin, a pre-synaptic toxin with enzymatic activity. Proc Natl Acad Sci U S A. 1976 Jan;73(1):178–182. doi: 10.1073/pnas.73.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Strong P. N., Heuser J. E., Kelly R. B. Selective enzymatic hydrolysis of nerve terminal phospholipids by beta-bungarotoxin: biochemical and morphological studies. Prog Clin Biol Res. 1977;15:227–249. [PubMed] [Google Scholar]
  42. Suszkiw J. B., Pilar G. Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals. J Neurochem. 1976 Jun;26(6):1133–1138. doi: 10.1111/j.1471-4159.1976.tb06996.x. [DOI] [PubMed] [Google Scholar]
  43. Swanson P. D. Effects of beta-bungarotoxin, diphenylhydantoin and metabolic inhibitors on calcium uptake and on monovalent cations and high-energy phosphate contents of brain slices. J Neurochem. 1977 Oct;29(4):767–769. doi: 10.1111/j.1471-4159.1977.tb07800.x. [DOI] [PubMed] [Google Scholar]
  44. Thesleff S. Trophic functions of the neuron. II. Denervation and regulation of muscle. Physiological effects of denervation of muscle. Ann N Y Acad Sci. 1974 Mar 22;228(0):89–104. doi: 10.1111/j.1749-6632.1974.tb20504.x. [DOI] [PubMed] [Google Scholar]
  45. Vaca K., Pilar G. Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation. J Gen Physiol. 1979 May;73(5):605–628. doi: 10.1085/jgp.73.5.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wagner G. M., Mart P. E., Kelly R. B. Beta-bungarotoxin inhibition of calcium accumulation by rat brain mitochondria. Biochem Biophys Res Commun. 1974 May 20;58(2):475–481. doi: 10.1016/0006-291x(74)90389-1. [DOI] [PubMed] [Google Scholar]
  47. Wernicke J. F., Vanker A. D., Howard B. D. The mechanism of action of beta-bungarotoxin. J Neurochem. 1975 Oct;25(4):483–496. doi: 10.1111/j.1471-4159.1975.tb04354.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES