Full text
PDF![14](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/1820998a161a/biochemj00937-0028.png)
![15](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/e2ab857a08e7/biochemj00937-0029.png)
![16](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/346e108ead71/biochemj00937-0030.png)
![17](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/9bd3b37cb7d1/biochemj00937-0031.png)
![18](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/c1f571caef24/biochemj00937-0032.png)
![19](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/27ef9ec0dc08/biochemj00937-0033.png)
![20](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/5938a254ad2c/biochemj00937-0034.png)
![21](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/69123abcea25/biochemj00937-0035.png)
![22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/d2053780a8eb/biochemj00937-0036.png)
![23](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/d58d01001efe/biochemj00937-0037.png)
![24](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/ef7423245e67/biochemj00937-0038.png)
![25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/2361eec5236b/biochemj00937-0039.png)
![26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/0a6207251c87/biochemj00937-0040.png)
![27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/3ea56d3cd7de/biochemj00937-0041.png)
![28](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/bb080d64d23e/biochemj00937-0042.png)
![29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/552032fd4cbd/biochemj00937-0043.png)
![30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a0/1274934/88f407e7c1d0/biochemj00937-0044.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bach S. J., Dixon M., Zerfas L. G. Yeast lactic dehydrogenase and cytochrome b(2). Biochem J. 1946;40(2):229–239. [PMC free article] [PubMed] [Google Scholar]
- Barron E. S., Miller Z. B., Kalnitsky G. The oxidation of dithiols. Biochem J. 1947;41(1):62–68. doi: 10.1042/bj0410062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barron E. S., Miller Z. B., Meyer J. The effect of 2:3-dimercaptopropanol on the activity of enzymes and on the metabolism of tissues. Biochem J. 1947;41(1):78–82. doi: 10.1042/bj0410078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopkins F. G., Morgan E. J., Lutwak-Mann C. The influence of thiol groups in the activity of dehydrogenases. II: With an addendum on the location of dehydrogenases in muscle. Biochem J. 1938 Oct;32(10):1829–1848. doi: 10.1042/bj0321829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopkins F. G., Morgan E. J. The influence of thiol-groups in the activity of dehydrogenases. Biochem J. 1938 Mar;32(3):611–620. doi: 10.1042/bj0320611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keilin D., Hartree E. F. Activity of the succinic dehydrogenase-cytochrome system in different tissue preparations. Biochem J. 1949;44(2):205–218. doi: 10.1042/bj0440205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keilin D., Hartree E. F. Properties of azide-catalase. Biochem J. 1945;39(2):148–157. doi: 10.1042/bj0390148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keilin D., Hartree E. F. Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochem J. 1945;39(4):293–301. [PMC free article] [PubMed] [Google Scholar]
- Keilin D., Hartree E. F. Purification and properties of cytochrome c. Biochem J. 1945;39(4):289–292. doi: 10.1042/bj0390289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemberg R., Legge J. W., Lockwood W. H. Coupled oxidation of ascorbic acid and haemoglobin: Formation and properties of choleglobin. Biochem J. 1941 Mar;35(3):328–338. doi: 10.1042/bj0350328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFarlane W. D. Application of the sodium diethyldithiocarbamate reaction to the micro-colorimetric determination of copper in organic substances. Biochem J. 1932;26(4):1022–1033. doi: 10.1042/bj0261022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirie N. W. The preparation of glutathione from yeast and liver. Biochem J. 1930;24(1):51–54. doi: 10.1042/bj0240051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proceedings of the Biochemical Society. Biochem J. 1948;42(1):i.1–i.x. [PMC free article] [PubMed] [Google Scholar]
- Quastel J. H., Wheatley A. H. The relation of thiol compounds to glucose fermentation. Biochem J. 1932;26(6):2169–2176. doi: 10.1042/bj0262169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater E. C. A comparative study of the succinic dehydrogenase-cytochrome system in heart muscle and in kidney. Biochem J. 1949;45(1):1–8. doi: 10.1042/bj0450001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater E. C. The action of inhibitors on the system of enzymes which catalyse the aerobic oxidation of succinate. Biochem J. 1949;45(1):8–13. doi: 10.1042/bj0450008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater E. C. The measurement of the cytochrome oxidase activity of enzyme preparations. Biochem J. 1949;44(3):305–318. doi: 10.1042/bj0440305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb E. C., Van Heyningen R. The action of British anti-lewisite (BAL) on enzyme systems. Biochem J. 1947;41(1):74–78. doi: 10.1042/bj0410074. [DOI] [PMC free article] [PubMed] [Google Scholar]