Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Jun;66(6):1768–1776. doi: 10.1016/S0006-3495(94)80971-3

Response of a single cell to an external electric field.

W Krassowska 1, J C Neu 1
PMCID: PMC1275903  PMID: 8075318

Abstract

The response of a cell to an external electric field is investigated using dimensional analysis and singular perturbation. The results demonstrate that the response of a cell is a two-stage process consisting of the initial polarization that proceeds with the cellular time constant (< 1 microseconds), and of the actual change of physiological state that proceeds with the membrane time constant (several milliseconds). The second stage is governed by an ordinary differential equation similar to that of a space-clamped membrane patch but formulated in terms of intracellular rather than transmembrane potential. Therefore, it is meaningful to analyze the physiological state and the dynamics of a cell as a whole instead of the physiological states and the dynamics of the underlying membrane patches. This theoretical result is illustrated with an example of an excitation of a cylindrical cell by a transverse electric field.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardou A. L., Chesnais J. M., Birkui P. J., Govaere M. C., Auger P. M., Von Euw D., Degonde J. Directional variability of stimulation threshold measurements in isolated guinea pig cardiomyocytes: relationship with orthogonal sequential defibrillating pulses. Pacing Clin Electrophysiol. 1990 Dec;13(12 Pt 1):1590–1595. doi: 10.1111/j.1540-8159.1990.tb06859.x. [DOI] [PubMed] [Google Scholar]
  2. Beeler G. W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 1977 Jun;268(1):177–210. doi: 10.1113/jphysiol.1977.sp011853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloomfield V. Editorial. Biophys J. 1992 Jul;63(1):1–1. doi: 10.1016/S0006-3495(92)81571-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cartee L. A., Plonsey R. The transient subthreshold response of spherical and cylindrical cell models to extracellular stimulation. IEEE Trans Biomed Eng. 1992 Jan;39(1):76–85. doi: 10.1109/10.108130. [DOI] [PubMed] [Google Scholar]
  5. Chernysh A. M., Tabak VYa, Bogushevich M. S. Mechanisms of electrical defibrillation of the heart. Resuscitation. 1988 Jul;16(3):169–178. doi: 10.1016/0300-9572(88)90044-5. [DOI] [PubMed] [Google Scholar]
  6. Dillon S. M. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ Res. 1991 Sep;69(3):842–856. doi: 10.1161/01.res.69.3.842. [DOI] [PubMed] [Google Scholar]
  7. FitzHugh R. Dimensional analysis of nerve models. J Theor Biol. 1973 Aug 22;40(3):517–541. doi: 10.1016/0022-5193(73)90008-8. [DOI] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Irnich W. The fundamental law of electrostimulation and its application to defibrillation. Pacing Clin Electrophysiol. 1990 Nov;13(11 Pt 1):1433–1447. doi: 10.1111/j.1540-8159.1990.tb04019.x. [DOI] [PubMed] [Google Scholar]
  10. Klee M. Intracellular biopotentials during static extracellular stimulation. Biophys J. 1973 Aug;13(8):822–831. doi: 10.1016/S0006-3495(73)86029-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klee M., Plonsey R. Stimulation of spheroidal cells--the role of cell shape. IEEE Trans Biomed Eng. 1976 Jul;23(4):347–354. doi: 10.1109/tbme.1976.324597. [DOI] [PubMed] [Google Scholar]
  12. Knisley S. B., Blitchington T. F., Hill B. C., Grant A. O., Smith W. M., Pilkington T. C., Ideker R. E. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ Res. 1993 Feb;72(2):255–270. doi: 10.1161/01.res.72.2.255. [DOI] [PubMed] [Google Scholar]
  13. Krassowska W., Pilkington T. C., Ideker R. E. Periodic conductivity as a mechanism for cardiac stimulation and defibrillation. IEEE Trans Biomed Eng. 1987 Jul;34(7):555–560. doi: 10.1109/tbme.1987.325986. [DOI] [PubMed] [Google Scholar]
  14. Leon L. J., Roberge F. A. A model study of extracellular stimulation of cardiac cells. IEEE Trans Biomed Eng. 1993 Dec;40(12):1307–1319. doi: 10.1109/10.250586. [DOI] [PubMed] [Google Scholar]
  15. Plonsey R., Barr R. C. Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillating (stimulating) currents. Med Biol Eng Comput. 1986 Mar;24(2):130–136. doi: 10.1007/BF02443925. [DOI] [PubMed] [Google Scholar]
  16. Teissie J., Tsong T. Y. Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry. 1981 Mar 17;20(6):1548–1554. doi: 10.1021/bi00509a022. [DOI] [PubMed] [Google Scholar]
  17. Tung L., Sliz N., Mulligan M. R. Influence of electrical axis of stimulation on excitation of cardiac muscle cells. Circ Res. 1991 Sep;69(3):722–730. doi: 10.1161/01.res.69.3.722. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES