Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Apr;301:175–190. doi: 10.1113/jphysiol.1980.sp013197

Voltage-dependent charge movement in frog slow muscle fibres.

W F Gilly, C S Hui
PMCID: PMC1279390  PMID: 6967972

Abstract

1. Voltage-clamp experiments on frog slow and twitch fibres were carried out using the three-micro-electrode technique. Potassium currents were blocked by tetraethylammonium. Contraction was blocked by 2 mM-tetracaine. 2. After subtracting the linear capacitive and leakage currents, the delta V(test-control) traces from slow fibres show 'on' and 'off' charge movements similar to those observed in twitch fibres. 3. The time integrals of the 'on' and 'off' transients, Qon and Qoff, in slow fibres are, as in twitch fibres, almost equal in magnitude but opposite in direction. 4. The charge-voltage distribution is well fitted by a sigmoid curve given by (Formula: see text), which has been successfully applied to twitch fibres. Data from three fibres gave V = -25 mV, k = 13 mV, and Qmax = 7 nC/microF. Thus, intramembranous charge in slow fibres has the same steady-state voltage distribution as that in twitch fibres, but the quantity of maximum movable charge is only 1/4 to 1/3 as large. 5. Charge movement in slow fibres does not inactivate completely when the fibres are held at -20 to 0 mV for durations as long as 30 min. 6. These results show that charge movement exists in slow fibres and may serve the same function in regulating contractile activation as that postulated for twitch fibres. The lack of complete inactivation may be consistent with the ability of slow fibres to maintain maximal tension during prolonged depolarizations.

Full text

PDF
184

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Almers W. Charge movement in the membrane of striated muscle. J Physiol. 1976 Jan;254(2):339–360. doi: 10.1113/jphysiol.1976.sp011235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Caputo C., Huang C. L. Effect of stretch on intramembrane charge movement in striated muscle [proceedings]. J Physiol. 1978 Nov;284:151P–152P. [PubMed] [Google Scholar]
  3. Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adrian R. H., Chandler W. K., Rakowski R. F. Charge movement and mechanical repriming in skeletal muscle. J Physiol. 1976 Jan;254(2):361–388. doi: 10.1113/jphysiol.1976.sp011236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Adrian R. H., Peres A. R. A gating signal for the potassium channel? Nature. 1977 Jun 30;267(5614):800–804. doi: 10.1038/267800a0. [DOI] [PubMed] [Google Scholar]
  6. Adrian R. H., Peres A. Charge movement and membrane capacity in frog muscle. J Physiol. 1979 Apr;289:83–97. doi: 10.1113/jphysiol.1979.sp012726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Almers W., Best P. M. Effects of tetracaine on displacement currents and contraction of frog skeletal muscle. J Physiol. 1976 Nov;262(3):583–611. doi: 10.1113/jphysiol.1976.sp011611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Almers W. Differential effects of tetracaine on delayed potassium channels and displacement currents in frog skeletal muscle. J Physiol. 1976 Nov;262(3):613–637. doi: 10.1113/jphysiol.1976.sp011612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chandler W. K., Rakowski R. F., Schneider M. F. A non-linear voltage dependent charge movement in frog skeletal muscle. J Physiol. 1976 Jan;254(2):245–283. doi: 10.1113/jphysiol.1976.sp011232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Mello W. C. Membrane sealing in frog skeletal-muscle fibers. Proc Natl Acad Sci U S A. 1973 Apr;70(4):982–984. doi: 10.1073/pnas.70.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flitney F. W. The volume of the T-system and its association with the sarcoplasmic reticulum in slow muscle fibres of the frog. J Physiol. 1971 Aug;217(1):243–257. doi: 10.1113/jphysiol.1971.sp009569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Franzini-Armstrong C. Studies of the triad. IV. Structure of the junction in frog slow fibers. J Cell Biol. 1973 Jan;56(1):120–128. doi: 10.1083/jcb.56.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilly W. F., Hui C. S. Mechanical activation in slow and twitch skeletal muscle fibres of the frog. J Physiol. 1980 Apr;301:137–156. doi: 10.1113/jphysiol.1980.sp013195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gilly W. F., Hui C. S. Membrane electrical properties of frog slow muscle fibres. J Physiol. 1980 Apr;301:157–173. doi: 10.1113/jphysiol.1980.sp013196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heistracher P., Hunt C. C. The relation of membrane changes ot contraction in twitch muscle fibres. J Physiol. 1969 May;201(3):589–611. doi: 10.1113/jphysiol.1969.sp008774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hui C. S. Possible origin of gating current in nerve membrane. Biosystems. 1977 Apr;8(4):207–212. doi: 10.1016/0303-2647(77)90042-9. [DOI] [PubMed] [Google Scholar]
  20. Lüttgau H. C., Oetliker H. The action of caffeine on the activation of the contractile mechanism in straited muscle fibres. J Physiol. 1968 Jan;194(1):51–74. doi: 10.1113/jphysiol.1968.sp008394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nasledov G. A., Mandelstam J. E., Radzjukewich T. L. A study of excitation-contraction coupling in frog tonic muscle fibers of Rana temporaria. Experientia. 1972 Nov 15;28(11):1305–1306. doi: 10.1007/BF01965310. [DOI] [PubMed] [Google Scholar]
  22. PEACHEY L. D., HUXLEY A. F. Structural identification of twitch and slow striated muscle fibers of the frog. J Cell Biol. 1962 Apr;13:177–180. doi: 10.1083/jcb.13.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Page S. G. A comparison of the fine structures of frog slow and twitch muscle fibers. J Cell Biol. 1965 Aug;26(2):477–497. doi: 10.1083/jcb.26.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schneider M. F., Chandler W. K. Effects of membrane potential on the capacitance of skeletal muscle fibers. J Gen Physiol. 1976 Feb;67(2):125–163. doi: 10.1085/jgp.67.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  26. Stefani E., Steinbach A. B. Resting potential and electrical properties of frog slow muscle fibres. Effect of different external solutions. J Physiol. 1969 Aug;203(2):383–401. doi: 10.1113/jphysiol.1969.sp008869. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES