Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Jul;58(1):273–275. doi: 10.1016/S0006-3495(90)82373-0

Fluid phase connectivity in an isomorphous, two-component, two-phase phosphatidylcholine bilayer.

W L Vaz 1, E C Melo 1, T E Thompson 1
PMCID: PMC1280960  PMID: 2383636

Abstract

Two-dimensional fluid phase connectivity is examined in mixed bilayers of dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine as a function of composition and temperature at constant pressure using fluorescence recovery after photobleaching (FRAP). These isomorphous phospholipid mixtures exhibit nearly ideal mixing behavior. Dilauroyl phosphatidylethanolamine covalently linked through its amino function to NBD is used as the fluorescent probe in this study. These studies show the line of connectivity to be coincident with the line connecting the midpoints of all tie lines in the two-phase region of the phase diagram.

Full text

PDF
274

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chapman D., Urbina J. Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J Biol Chem. 1974 Apr 25;249(8):2512–2521. [PubMed] [Google Scholar]
  2. Freire E., Snyder B. Estimation of the lateral distribution of molecules in two-component lipid bilayers. Biochemistry. 1980 Jan 8;19(1):88–94. doi: 10.1021/bi00542a014. [DOI] [PubMed] [Google Scholar]
  3. Lentz B. R., Barenholz Y., Thompson T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes. Biochemistry. 1976 Oct 5;15(20):4529–4537. doi: 10.1021/bi00665a030. [DOI] [PubMed] [Google Scholar]
  4. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rock P., Thompson T. E., Tillack T. W. Persistence at low temperature of the P beta' ripple in dipalmitoylphosphatidylcholine multilamellar vesicles containing either glycosphingolipids or cholesterol. Biochim Biophys Acta. 1989 Mar 13;979(3):347–351. doi: 10.1016/0005-2736(89)90255-1. [DOI] [PubMed] [Google Scholar]
  6. Saxton M. J. Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient. Biophys J. 1989 Sep;56(3):615–622. doi: 10.1016/S0006-3495(89)82708-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shimshick E. J., McConnell H. M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973 Jun 5;12(12):2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
  8. Vaz W. L., Melo E. C., Thompson T. E. Translational diffusion and fluid domain connectivity in a two-component, two-phase phospholipid bilayer. Biophys J. 1989 Nov;56(5):869–876. doi: 10.1016/S0006-3495(89)82733-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Xia W, Thorpe MF. Percolation properties of random ellipses. Phys Rev A Gen Phys. 1988 Sep 1;38(5):2650–2656. doi: 10.1103/physreva.38.2650. [DOI] [PubMed] [Google Scholar]
  10. van Dijck P. W., Kaper A. J., Oonk H. A., de Gier J. Miscibility properties of binary phosphatidylcholine mixtures. A calorimetric study. Biochim Biophys Acta. 1977 Oct 3;470(1):58–69. doi: 10.1016/0005-2736(77)90061-x. [DOI] [PubMed] [Google Scholar]
  11. von Dreele P. H. Estimation of lateral species separation from phase transitions in nonideal two-dimensional lipid mixtures. Biochemistry. 1978 Sep 19;17(19):3939–3943. doi: 10.1021/bi00612a009. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES