Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Sep;58(3):653–663. doi: 10.1016/S0006-3495(90)82408-5

Influence of an electrical potential on the charge transfer kinetics of bacteriorhodopsin

Christoph Kleinschmidt 1, Benno Hess 1
PMCID: PMC1281006  PMID: 19431767

Abstract

The adsorption of bacteriorhodopsin(bR)-containing purple membranes (PM) to black lipid membranes (BLM) was used to study the charge translocation kinetics of bR upon flash excitation.

The discharge of the PM-BLM system after charging upon illumination is found to proceed quite slowly (discharge time up to several minutes) but is considerably accelerated by addition of the protonophore FCCP.

Therefore, the dependence of the proton transfer kinetics in bR on electrical potentials generated by preceding flashes of varying repetition rate and intensity was investigated. The kinetics are slowed down with increasing flash intensity as well as repetition rate. This effect is partly abolished by small amounts of FCCP.

A new model is introduced which takes into account the instantaneous feedback of the electrical potential on the kinetics of the pump current. It explains the observed deviations from first-order kinetics and renders an approach with “distributed kinetics” unnecessary.

Full text

PDF
662

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  2. Dancsházy Z., Karvaly B. Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic study. FEBS Lett. 1976 Dec 15;72(1):136–138. doi: 10.1016/0014-5793(76)80829-0. [DOI] [PubMed] [Google Scholar]
  3. Dér A., Hargittai P., Simon J. Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel. J Biochem Biophys Methods. 1985 Mar;10(5-6):295–300. doi: 10.1016/0165-022x(85)90063-6. [DOI] [PubMed] [Google Scholar]
  4. Groma G. I., Dancshazy Z. How Many M Forms are there in the Bacteriorhodopsin Photocycle? Biophys J. 1986 Aug;50(2):357–366. doi: 10.1016/S0006-3495(86)83469-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Groma G. I., Helgerson S. L., Wolber P. K., Beece D., Dancsházy Z., Keszthelyi L., Stoeckenius W. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modeling of the M----bR reactions. Biophys J. 1984 May;45(5):985–992. doi: 10.1016/S0006-3495(84)84243-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  7. Herrmann T. R., Rayfield G. W. The electrical response to light of bacteriorhodopsin in planar membranes. Biophys J. 1978 Feb;21(2):111–125. doi: 10.1016/S0006-3495(78)85512-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holz M., Lindau M., Heyn M. P. Distributed kinetics of the charge movements in bacteriorhodopsin: evidence for conformational substates. Biophys J. 1988 Apr;53(4):623–633. doi: 10.1016/S0006-3495(88)83141-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Korenstein R., Hess B., Kuschmitz D. Branching reactions in the photocycle of bacteriorhodopsin. FEBS Lett. 1978 Sep 15;93(2):266–270. doi: 10.1016/0014-5793(78)81118-1. [DOI] [PubMed] [Google Scholar]
  10. Liu S. Y., Ebrey T. G. Photocurrent measurements of the purple membrane oriented in a polyacrylamide gel. Biophys J. 1988 Aug;54(2):321–329. doi: 10.1016/S0006-3495(88)82962-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Läuger P. Thermodynamic and kinetic properties of electrogenic ion pumps. Biochim Biophys Acta. 1984 Sep 3;779(3):307–341. doi: 10.1016/0304-4157(84)90015-7. [DOI] [PubMed] [Google Scholar]
  12. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  13. Quintanilha A. T. Control of the photocycle in bacteriorhodopsin by electrochemical gradients. FEBS Lett. 1980 Aug 11;117(1):8–12. doi: 10.1016/0014-5793(80)80901-x. [DOI] [PubMed] [Google Scholar]
  14. Stoeckenius W., Lozier R. H., Bogomolni R. A. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1979 Mar 14;505(3-4):215–278. doi: 10.1016/0304-4173(79)90006-5. [DOI] [PubMed] [Google Scholar]
  15. Trissl H. W., Montal M. Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin. Nature. 1977 Apr 14;266(5603):655–657. doi: 10.1038/266655a0. [DOI] [PubMed] [Google Scholar]
  16. Váró G., Keszthelyi L. Photoelectric signals from dried oriented purple membranes of Halobacterium halobium. Biophys J. 1983 Jul;43(1):47–51. doi: 10.1016/S0006-3495(83)84322-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Xie A. H., Nagle J. F., Lozier R. H. Flash spectroscopy of purple membrane. Biophys J. 1987 Apr;51(4):627–635. doi: 10.1016/S0006-3495(87)83387-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES