Abstract
1. Application of voltage clamp pulses (1--10 sec) to frog ventricular strips causes temporary changes in the extracellular K concentration. 2. The changes in the extracellular K concentration can be estimated from (a) slowly decaying post-clamp after-potentials, (b) changes in the action potential duration, and (c) measurements with a K-selective micro-electrode. 3. The depolarization of the resting potential and the shortening of the action potential are present in approximately the same proportions during voltage-clamp induced extracellular K accumulation and during perfusion with a K-ricn Ringer solution but small consistent differences are noticed. 4. The measurements of the after-potential, the action potential shortening, and the K-electrode response were analysed as indicators of extracellular K+ activity and it was concluded that the after-potential provides the most convenient and reliable estimate of the absolute magnitude of the voltage-clamp induced extracellular K accumulation. 5. The depolarizing after-potentials decay more slowly than the hyperpolarizing after-potentials but it is found that this reflects the selectivity of the membrane to K+ concentrations as predicted by the Nernst or the Goldman equations. 6. Analysis of the redistribution of accumulated K+ from the decay of the after-potential suggests that the major part of the redistribution process can be described by a single time constant (2--4 sec). A much longer time constant is required for a smaller component of the 'tail' in order to bring [K]o to the normal resting state. 7. N-shaped relations similar to the 'steady state' current-voltage relation are obtained when the post-clamp after-potential, the action potential shortening, and the K-electrode response are plotted versus the clamped membrane potential. The maxima of these curves are located around -40 mV and the minima around -20 mV. 8. In spite of a significant outward membrane current (1--1.5 microamperemeter) in the minimum region (-20 mV), the post-clamp after-potential is often hyperpolarizing in nature suggesting extracellular K depletion. 9. These findings indicate that the K efflux is lower at -20 mV than at both higher and lower potentials and suggest that the N-shape 'steady state' current-voltage relation mainly reflects the voltage dependency of the K current. 10. A theory for K accumulation in a single compartment is presented which predicts that a simple linear RC-circuit may describe the electrical response of the preparation in a limited potential range around the resting potential. The extracellular accumulation space was estimated to be 13--16% of the total volume of the preparation. It is tentatively suggested that the accumulation space is equivalent to the subendothelial fraction of the extracellular space.
Full text
PDF![83](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/39d56b2deb94/jphysiol00755-0091.png)
![84](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/03641285e861/jphysiol00755-0092.png)
![85](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/b1d3e637ef99/jphysiol00755-0093.png)
![86](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/73808ec433f9/jphysiol00755-0094.png)
![87](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/125fa4c5ad9a/jphysiol00755-0095.png)
![88](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/461a7c8fa5ca/jphysiol00755-0096.png)
![89](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/7241ecc456d4/jphysiol00755-0097.png)
![90](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/fde46cdeda47/jphysiol00755-0098.png)
![91](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/9fca8aabf53d/jphysiol00755-0099.png)
![92](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/cddc773d88ab/jphysiol00755-0100.png)
![93](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/79f454ddafc7/jphysiol00755-0101.png)
![94](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/cff8f42af4ef/jphysiol00755-0102.png)
![95](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/8ffd86fae62f/jphysiol00755-0103.png)
![96](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/293e9425ecc3/jphysiol00755-0104.png)
![97](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/0162c5cf92fe/jphysiol00755-0105.png)
![98](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/b4976adc54f1/jphysiol00755-0106.png)
![99](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/f3c43ddb1e9b/jphysiol00755-0107.png)
![100](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/389ca6d821c3/jphysiol00755-0108.png)
![101](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/70a19918481a/jphysiol00755-0109.png)
![102](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/7eb30531b3bb/jphysiol00755-0110.png)
![103](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/4fafcaf82499/jphysiol00755-0111.png)
![104](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/ed5760cfa856/jphysiol00755-0112.png)
![105](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/cd7d65ec3c30/jphysiol00755-0113.png)
![106](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/b49f536dad83/jphysiol00755-0114.png)
![107](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/7aa168013064/jphysiol00755-0115.png)
![108](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/c31cddf18cc1/jphysiol00755-0116.png)
![109](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/c49cce0fbce2/jphysiol00755-0117.png)
![110](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/4df90e0be3fe/jphysiol00755-0118.png)
![111](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/1281560/ac9ec24bbde1/jphysiol00755-0119.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelman W. J., Jr, Fitzhugh R. Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space. Fed Proc. 1975 Apr;34(5):1322–1329. [PubMed] [Google Scholar]
- Adrian R. H., Chandler W. K., Hodgkin A. L. Slow changes in potassium permeability in skeletal muscle. J Physiol. 1970 Jul;208(3):645–668. doi: 10.1113/jphysiol.1970.sp009140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Freygang W. H. The potassium and chloride conductance of frog muscle membrane. J Physiol. 1962 Aug;163(1):61–103. doi: 10.1113/jphysiol.1962.sp006959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W. Potassium conductance changes in skeletal muscle and the potassium concentration in the transverse tubules. J Physiol. 1972 Aug;225(1):33–56. doi: 10.1113/jphysiol.1972.sp009928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W. The decline of potassium permeability during extreme hyperpolarization in frog skeletal muscle. J Physiol. 1972 Aug;225(1):57–83. doi: 10.1113/jphysiol.1972.sp009929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry P. H., Adrian R. H. Slow conductance changes due to potassium depletion in the transverse tubules of frog muscle fibers during hyperpolarizing pulses. J Membr Biol. 1973;14(3):243–292. doi: 10.1007/BF01868081. [DOI] [PubMed] [Google Scholar]
- Baumgarten C. M., Isenberg G. Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Pflugers Arch. 1977 Mar 11;368(1-2):19–31. doi: 10.1007/BF01063450. [DOI] [PubMed] [Google Scholar]
- Brady A. J., Woodbury J. W. The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol. 1960 Dec;154(2):385–407. doi: 10.1113/jphysiol.1960.sp006586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Niedergerke R. Effects of calcium on the contraction of the hypodynamic frog heart. J Physiol. 1970 Dec;211(2):389–421. doi: 10.1113/jphysiol.1970.sp009284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleemann L., Morad M. Extracellular potassium accumulation and inward-going potassium rectification in voltage clamped ventricular muscle. Science. 1976 Jan 9;191(4222):90–92. doi: 10.1126/science.1246599. [DOI] [PubMed] [Google Scholar]
- Cleemann L., Morad M. Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation. J Physiol. 1979 Jan;286:113–143. doi: 10.1113/jphysiol.1979.sp012609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman Y., Morad M. Ionic membrane conductance during the time course of the cardiac action potential. J Physiol. 1977 Jul;268(3):655–695. doi: 10.1113/jphysiol.1977.sp011876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman Y., Morad M. Measurement of transmembrane potential and current in cardiac muscle: a new voltage clamp method. J Physiol. 1977 Jul;268(3):613–654. doi: 10.1113/jphysiol.1977.sp011875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keenan M. J., Niedergerke R. Intracellular sodium concentration and resting sodium fluxes of the frog heart ventricle. J Physiol. 1967 Jan;188(2):235–260. doi: 10.1113/jphysiol.1967.sp008136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kline R. P., Morad M. Potassium efflux in heart muscle during activity: extracellular accumulation and its implications. J Physiol. 1978 Jul;280:537–558. doi: 10.1113/jphysiol.1978.sp012400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kline R., Morad M. Potassium efflux and accumulation in heart muscle. Evidence from K +/- electrode experiments. Biophys J. 1976 Apr;16(4):367–372. doi: 10.1016/S0006-3495(76)85694-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb J. F., McGuigan J. A. The efflux of potassium, sodium, chloride, calcium and sulphate ions and of sorbitol and glycerol during the cardiac cycle in frog's ventricle. J Physiol. 1968 Mar;195(2):283–315. doi: 10.1113/jphysiol.1968.sp008459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister R. E., Noble D. The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J Physiol. 1966 Oct;186(3):632–662. doi: 10.1113/jphysiol.1966.sp008060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGuigan J. A. Some limitations of the double sucrose gap, and its use in a study of the slow outward current in mammalian ventricular muscle. J Physiol. 1974 Aug;240(3):775–806. doi: 10.1113/jphysiol.1974.sp010634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morad M., Orkand R. K. Excitation-concentration coupling in frog ventricle: evidence from voltage clamp studies. J Physiol. 1971 Dec;219(1):167–189. doi: 10.1113/jphysiol.1971.sp009656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Lux H. D. Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J Gen Physiol. 1973 Mar;61(3):385–399. doi: 10.1085/jgp.61.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niedergerke R., Orkand R. K. The dual effect of calcium on the action potential of the frog's heart. J Physiol. 1966 May;184(2):291–311. doi: 10.1113/jphysiol.1966.sp007916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble S. J. Potassium accumulation and depletion in frog atrial muscle. J Physiol. 1976 Jul;258(3):579–613. doi: 10.1113/jphysiol.1976.sp011436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAGE E., BERNSTEIN R. S. CAT HEART MUSCLE IN VITRO. V. DIFFUSION THROUGH A SHEET OF RIGHT VENTRICLE. J Gen Physiol. 1964 Jul;47:1129–1140. doi: 10.1085/jgp.47.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page S. G., Niedergerke R. Structures of physiological interest in the frog heart ventricle. J Cell Sci. 1972 Jul;11(1):179–203. doi: 10.1242/jcs.11.1.179. [DOI] [PubMed] [Google Scholar]