Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Feb;68(2):567–573. doi: 10.1016/S0006-3495(95)80218-3

Effect of ethanol-induced lipid interdigitation on the membrane solubility of Prodan, Acdan, and Laurdan.

J Zeng 1, P L Chong 1
PMCID: PMC1281721  PMID: 7696509

Abstract

The effect of ethanol-induced lipid interdigitation on the partition coefficient (Kp) of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and its two derivatives, 6-acetyl-2-(dimethylamino)naphthalene (Acdan) and 6-lauroyl-2-(dimethylamino)naphthalene (Laurdan), in L-alpha-dipalmitoylphosphatidylcholine (DPPC) vesicles has been examined by a precipitation method over the ethanol concentration range of 0-1.8 M. At 20 degrees C and in the absence of ethanol, the Kp values for Acdan, Prodan, and Laurdan are 2.0 x 10(3), 2.8 x 10(4), and 4.7 x 10(6), respectively. This result suggests that the Kp of Prodan and its derivatives is not simply a linear function of the polymethylene units. As DPPC undergoes the ethanol-induced phase transition from the noninterdigitated to the fully interdigitated gel state, Kp for Prodan and Acdan decreases by a factor of 5 and 2, respectively, whereas Kp for Laurdan exhibits no detectable changes with ethanol. The differences in Kp are in parallel with the differences in the fluorescence emission spectra of these probes over the ethanol concentration range examined. Previous fluorescence and infrared data indicated that membrane perturbation caused by the probes increases in the order: Laurdan > Prodan > Acdan. Thus, the degree of membrane perturbation also seems to be in parallel with Kp. Among these three probes, Prodan fluorescence reflects most correctly the ethanol-induced lipid interdigitation. In conclusion, the partitioning of small solutes in lipid membranes is significantly reduced by ethanol-induced lipid interdigitation, probably as a result of an increased membrane surface density due to the increased intramolecular lipid acyl chain ordering and a tighter overall intermolecular packing.

Full text

PDF
570

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auger M., Jarrell H. C., Smith I. C., Wong P. T., Siminovitch D. J., Mantsch H. H. Pressure-induced exclusion of a local anesthetic from model and nerve membranes. Biochemistry. 1987 Dec 29;26(26):8513–8516. doi: 10.1021/bi00400a003. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Boggs J. M., Rangaraj G., Watts A. Behavior of spin labels in a variety of interdigitated lipid bilayers. Biochim Biophys Acta. 1989 Jun 6;981(2):243–253. doi: 10.1016/0005-2736(89)90034-5. [DOI] [PubMed] [Google Scholar]
  4. Chong P. L., Capes S., Wong P. T. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers: a FT-IR study. Biochemistry. 1989 Oct 17;28(21):8358–8363. doi: 10.1021/bi00447a014. [DOI] [PubMed] [Google Scholar]
  5. Chong P. L. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry. 1988 Jan 12;27(1):399–404. doi: 10.1021/bi00401a060. [DOI] [PubMed] [Google Scholar]
  6. Chong P. L., Wong P. T. Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study. Biochim Biophys Acta. 1993 Jul 4;1149(2):260–266. doi: 10.1016/0005-2736(93)90209-i. [DOI] [PubMed] [Google Scholar]
  7. De Young L. R., Dill K. A. Solute partitioning into lipid bilayer membranes. Biochemistry. 1988 Jul 12;27(14):5281–5289. doi: 10.1021/bi00414a050. [DOI] [PubMed] [Google Scholar]
  8. Diamond J. M., Katz Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol. 1974;17(2):121–154. doi: 10.1007/BF01870176. [DOI] [PubMed] [Google Scholar]
  9. Herold L. L., Rowe E. S., Khalifah R. G. 13C-NMR and spectrophotometric studies of alcohol-lipid interactions. Chem Phys Lipids. 1987 Apr;43(3):215–225. doi: 10.1016/0009-3084(87)90009-0. [DOI] [PubMed] [Google Scholar]
  10. Huang Z. J., Haugland R. P. Partition coefficients of fluorescent probes with phospholipid membranes. Biochem Biophys Res Commun. 1991 Nov 27;181(1):166–171. doi: 10.1016/s0006-291x(05)81396-8. [DOI] [PubMed] [Google Scholar]
  11. Hui S. W., Huang C. H. X-ray diffraction evidence for fully interdigitated bilayers of 1-stearoyllysophosphatidylcholine. Biochemistry. 1986 Mar 25;25(6):1330–1335. doi: 10.1021/bi00354a021. [DOI] [PubMed] [Google Scholar]
  12. Katz Y., Diamond J. M. A method for measuring nonelectrolyte partition coefficients between liposomes and water. J Membr Biol. 1974;17(1):69–86. doi: 10.1007/BF01870173. [DOI] [PubMed] [Google Scholar]
  13. Komatsu H., Rowe E. S. Effect of cholesterol on the ethanol-induced interdigitated gel phase in phosphatidylcholine: use of fluorophore pyrene-labeled phosphatidylcholine. Biochemistry. 1991 Mar 5;30(9):2463–2470. doi: 10.1021/bi00223a024. [DOI] [PubMed] [Google Scholar]
  14. Luxnat M., Galla H. J. Partition of chlorpromazine into lipid bilayer membranes: the effect of membrane structure and composition. Biochim Biophys Acta. 1986 Apr 14;856(2):274–282. doi: 10.1016/0005-2736(86)90037-4. [DOI] [PubMed] [Google Scholar]
  15. Massey J. B., She H. S., Pownall H. J. Interfacial properties of model membranes and plasma lipoproteins containing ether lipids. Biochemistry. 1985 Nov 19;24(24):6973–6978. doi: 10.1021/bi00345a033. [DOI] [PubMed] [Google Scholar]
  16. Merlo S., Yager P. Optical method for monitoring the concentration of general anesthetics and other small organic molecules. An example of phase transition sensing. Anal Chem. 1990 Dec 15;62(24):2728–2735. doi: 10.1021/ac00223a015. [DOI] [PubMed] [Google Scholar]
  17. Nambi P., Rowe E. S., McIntosh T. J. Studies of the ethanol-induced interdigitated gel phase in phosphatidylcholines using the fluorophore 1,6-diphenyl-1,3,5-hexatriene. Biochemistry. 1988 Dec 27;27(26):9175–9182. doi: 10.1021/bi00426a015. [DOI] [PubMed] [Google Scholar]
  18. O'Leary T. J., Levin I. W. Raman spectroscopic study of an interdigitated lipid bilayer. Dipalmitoylphosphatidylcholine dispersed in glycerol. Biochim Biophys Acta. 1984 Oct 3;776(2):185–189. doi: 10.1016/0005-2736(84)90207-4. [DOI] [PubMed] [Google Scholar]
  19. Ohki K., Tamura K., Hatta I. Ethanol induces interdigitated gel phase (L beta I) between lamellar gel phase (L beta') and ripple phase (P beta') in phosphatidylcholine membranes: a scanning density meter study. Biochim Biophys Acta. 1990 Oct 19;1028(3):215–222. doi: 10.1016/0005-2736(90)90169-o. [DOI] [PubMed] [Google Scholar]
  20. Parasassi T., De Stasio G., Ravagnan G., Rusch R. M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991 Jul;60(1):179–189. doi: 10.1016/S0006-3495(91)82041-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parasassi T., Di Stefano M., Loiero M., Ravagnan G., Gratton E. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe. Biophys J. 1994 Mar;66(3 Pt 1):763–768. doi: 10.1016/s0006-3495(94)80852-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rottenberg H. Probing the interactions of alcohols with biological membranes with the fluorescent probe Prodan. Biochemistry. 1992 Oct 6;31(39):9473–9481. doi: 10.1021/bi00154a021. [DOI] [PubMed] [Google Scholar]
  23. Simon S. A., McIntosh T. J. Interdigitated hydrocarbon chain packing causes the biphasic transition behavior in lipid/alcohol suspensions. Biochim Biophys Acta. 1984 Jun 13;773(1):169–172. doi: 10.1016/0005-2736(84)90562-5. [DOI] [PubMed] [Google Scholar]
  24. Sommer A., Paltauf F., Hermetter A. Dipolar solvent relaxation on a nanosecond time scale in ether phospholipid membranes as determined by multifrequency phase and modulation fluorometry. Biochemistry. 1990 Dec 18;29(50):11134–11140. doi: 10.1021/bi00502a017. [DOI] [PubMed] [Google Scholar]
  25. Veiro J. A., Nambi P., Herold L. L., Rowe E. S. Effect of n-alcohols and glycerol on the pretransition of dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1987 Jun 30;900(2):230–238. doi: 10.1016/0005-2736(87)90337-3. [DOI] [PubMed] [Google Scholar]
  26. Weber G., Farris F. J. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry. 1979 Jul 10;18(14):3075–3078. doi: 10.1021/bi00581a025. [DOI] [PubMed] [Google Scholar]
  27. Wimley W. C., White S. H. Membrane partitioning: distinguishing bilayer effects from the hydrophobic effect. Biochemistry. 1993 Jun 29;32(25):6307–6312. doi: 10.1021/bi00076a001. [DOI] [PubMed] [Google Scholar]
  28. Wong P. T. Pressure-induced correlation field splitting of vibrational modes: structural and dynamic properties in lipid bilayers and biomembranes. Biophys J. 1994 May;66(5):1505–1514. doi: 10.1016/S0006-3495(94)80941-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wu W., Huang C., Conley T. G., Martin R. B., Levin I. W. Lamellar--micellar transition of 1-stearoyllysophosphatidylcholine assemblies in excess water. Biochemistry. 1982 Nov 9;21(23):5957–5961. doi: 10.1021/bi00266a035. [DOI] [PubMed] [Google Scholar]
  30. Zeng J. W., Chong P. L. Interactions between pressure and ethanol on the formation of interdigitated DPPC liposomes: a study with Prodan fluorescence. Biochemistry. 1991 Oct 1;30(39):9485–9491. doi: 10.1021/bi00103a014. [DOI] [PubMed] [Google Scholar]
  31. Zeng J., Smith K. E., Chong P. L. Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles. Biophys J. 1993 Oct;65(4):1404–1414. doi: 10.1016/S0006-3495(93)81204-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES