Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Mar;68(3):779–785. doi: 10.1016/S0006-3495(95)80252-3

Threshold fluctuations in an N sodium channel model of the node of Ranvier.

J T Rubinstein 1
PMCID: PMC1281801  PMID: 7756544

Abstract

Computer simulations of stochastic single-channel open-close kinetics are applied to an N sodium channel model of a node of Ranvier. Up to 32,000 voltage-gated sodium channels have been simulated with modified amphibian sodium channel kinetics. Poststimulus time histograms are obtained with 1000 monophasic pulse stimuli, and measurements are made of changes in the relative spread of threshold (RS) with changes in the model parameters. RS is found to be invariant with pulse durations from 100 microseconds to 3 ms. RS is approximately of inverse proportion to square-root of N. It decreases with increasing temperature and is dependent on passive electrical properties of the membrane as well as the single-channel conductance. The simulated RS and its independence of pulse duration is consistent with experimental results from the literature. Thus, the microscopic fluctuations of single, voltage-sensitive sodium channels in the amphibian peripheral node of Ranvier are sufficient to account for the macroscopic fluctuation if threshold to electrical stimulation.

Full text

PDF
779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Stevens C. F. Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J Neurosci. 1987 Feb;7(2):418–431. doi: 10.1523/JNEUROSCI.07-02-00418.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clay J. R., DeFelice L. J. Relationship between membrane excitability and single channel open-close kinetics. Biophys J. 1983 May;42(2):151–157. doi: 10.1016/S0006-3495(83)84381-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dynes S. B., Delgutte B. Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res. 1992 Feb;58(1):79–90. doi: 10.1016/0378-5955(92)90011-b. [DOI] [PubMed] [Google Scholar]
  4. FRANKENHAEUSER B., HUXLEY A. F. THE ACTION POTENTIAL IN THE MYELINATED NERVE FIBER OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA. J Physiol. 1964 Jun;171:302–315. doi: 10.1113/jphysiol.1964.sp007378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jonas P., Bräu M. E., Hermsteiner M., Vogel W. Single-channel recording in myelinated nerve fibers reveals one type of Na channel but different K channels. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7238–7242. doi: 10.1073/pnas.86.18.7238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lecar H., Nossal R. Theory of threshold fluctuations in nerves. I. Relationships between electrical noise and fluctuations in axon firing. Biophys J. 1971 Dec;11(12):1048–1067. doi: 10.1016/S0006-3495(71)86277-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Liberman M. C., Oliver M. E. Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol. 1984 Feb 20;223(2):163–176. doi: 10.1002/cne.902230203. [DOI] [PubMed] [Google Scholar]
  8. Neumcke B., Stämpfli R. Sodium currents and sodium-current fluctuations in rat myelinated nerve fibres. J Physiol. 1982 Aug;329:163–184. doi: 10.1113/jphysiol.1982.sp014296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Santos-Sacchi J. Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear. J Neurosci. 1993 Aug;13(8):3599–3611. doi: 10.1523/JNEUROSCI.13-08-03599.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Scholz A., Reid G., Vogel W., Bostock H. Ion channels in human axons. J Neurophysiol. 1993 Sep;70(3):1274–1279. doi: 10.1152/jn.1993.70.3.1274. [DOI] [PubMed] [Google Scholar]
  11. Schwarz J. R., Eikhof G. Na currents and action potentials in rat myelinated nerve fibres at 20 and 37 degrees C. Pflugers Arch. 1987 Aug;409(6):569–577. doi: 10.1007/BF00584655. [DOI] [PubMed] [Google Scholar]
  12. Sigworth F. J. The variance of sodium current fluctuations at the node of Ranvier. J Physiol. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. VERVEEN A. A. Axon diameter and fluctuation in excitability. Acta Morphol Neerl Scand. 1962;5:79–85. [PubMed] [Google Scholar]
  14. Wang G. K., Strichartz G. Kinetic analysis of the action of Leiurus scorpion alpha-toxin on ionic currents in myelinated nerve. J Gen Physiol. 1985 Nov;86(5):739–762. doi: 10.1085/jgp.86.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. van den Honert C., Stypulkowski P. H. Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hear Res. 1984 Jun;14(3):225–243. doi: 10.1016/0378-5955(84)90052-2. [DOI] [PubMed] [Google Scholar]
  16. van den Honert C., Stypulkowski P. H. Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli. Hear Res. 1987;29(2-3):207–222. doi: 10.1016/0378-5955(87)90168-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES