Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Mar;68(3):1120–1127. doi: 10.1016/S0006-3495(95)80286-9

Computation of the electrophoretic mobility of proteins.

K S Chae 1, A M Lenhoff 1
PMCID: PMC1281834  PMID: 7756531

Abstract

A scheme is presented for computing the electrophoretic mobility of proteins in free solution, accounting for the details of the protein shape and charge distribution. The method of Teubner is implemented using a boundary integral formulation within which the velocity distribution, the equilibrium electrical potential around the molecule, and the potential distribution due to the applied field are solved for numerically using the boundary element method. Good agreement of the numerical result is obtained for spheres with the corresponding semi-analytical specialization of Henry's analysis. For protein systems, the method is applied to lysozyme and ribonuclease A. In both cases, the predicted mobility tensors are fairly isotropic, with the resulting scalar mobilities being significantly smaller than for spheres of equal volume and net charge. Comparisons with previously published experimental results for ribonuclease show agreement to be excellent in the presence of a net charge, but poorer at the point of zero charge. The approach may be useful for evaluating approximate methods for estimating protein electrophoretic mobilities and for using electrophoretic measurements to obtain insight into charge distributions on proteins.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow D. J., Thornton J. M. The distribution of charged groups in proteins. Biopolymers. 1986 Sep;25(9):1717–1733. doi: 10.1002/bip.360250913. [DOI] [PubMed] [Google Scholar]
  2. Bergers J. J., Vingerhoeds M. H., van Bloois L., Herron J. N., Janssen L. H., Fischer M. J., Crommelin D. J. The role of protein charge in protein-lipid interactions. pH-dependent changes of the electrophoretic mobility of liposomes through adsorption of water-soluble, globular proteins. Biochemistry. 1993 May 4;32(17):4641–4649. doi: 10.1021/bi00068a023. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Brune D., Kim S. Predicting protein diffusion coefficients. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3835–3839. doi: 10.1073/pnas.90.9.3835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connolly M. L. The molecular surface package. J Mol Graph. 1993 Jun;11(2):139–141. doi: 10.1016/0263-7855(93)87010-3. [DOI] [PubMed] [Google Scholar]
  6. Egan W., Shindo H., Cohen J. S. On the tyrosine residues of ribonuclease A. J Biol Chem. 1978 Jan 10;253(1):16–17. [PubMed] [Google Scholar]
  7. Lenstra J. A., Bolscher B. G., Beintema J. J., Kaptein R. The aromatic residues of bovine pancreatic ribonuclease studied by 1H nuclear magnetic resonance. Eur J Biochem. 1979 Aug 1;98(2):385–397. doi: 10.1111/j.1432-1033.1979.tb13198.x. [DOI] [PubMed] [Google Scholar]
  8. Mosher R. A., Dewey D., Thormann W., Saville D. A., Bier M. Computer simulation and experimental validation of the electrophoretic behavior of proteins. Anal Chem. 1989 Feb 15;61(4):362–366. doi: 10.1021/ac00179a015. [DOI] [PubMed] [Google Scholar]
  9. SHUGAR D. The ultraviolet absorption spectrum of ribonuclease. Biochem J. 1952 Sep;52(1):142–149. doi: 10.1042/bj0520142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Swedberg S. A. Characterization of protein behavior in high-performance capillary electrophoresis using a novel capillary system. Anal Biochem. 1990 Feb 15;185(1):51–56. doi: 10.1016/0003-2697(90)90253-6. [DOI] [PubMed] [Google Scholar]
  11. Tanokura M. 1H nuclear magnetic resonance titration curves and microenvironments of aromatic residues in bovine pancreatic ribonuclease A. J Biochem. 1983 Jul;94(1):51–62. doi: 10.1093/oxfordjournals.jbchem.a134353. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES