Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 May;302:219–240. doi: 10.1113/jphysiol.1980.sp013239

The order of release of sodium and addition of potassium in the sodium-potassium pump reaction mechanism.

J R Sachs
PMCID: PMC1282844  PMID: 6447780

Abstract

1. The characteristics of oligomycin inhibition of the Na--K pump of human red cell membranes was investigated. Oligomycin inhibition of the pump was found to be reversible. 2. Inhibition of Na--K ATPase activity was uncompetitive with respect to ATP in broken membrane preparations. In intact cells inhibition was uncompetitive with respect to both intracellular and extracellular Na. 3. Oligomycin did not significantly inhibit the K--K exchange if the cells were Na-free, but if the cells contained a small amount of Na, oligomycin inhibition of the K--K exchange became significant. Taken together with the findings described above, this indicates that oligomycin combines with E1P-Na conformation of the pump and not with any E2 conformation. 4. When measurements are made in solutions high in Na, oligomycin is a non-competitive inhibitor with respect to external K, but in Na-free solutions, oligomycin inhibition is uncompetitive with respect to external K. 5. These findings indicate that, in the normal operation of the pump, Na is released to the outside before K adds.

Full text

PDF
240

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askari A., Koyal D. Different oligomycin sensitivities of the Na++K+-activated adenosinetriphosphatase and its partial reactions. Biochem Biophys Res Commun. 1968 Jul 26;32(2):227–232. doi: 10.1016/0006-291x(68)90373-2. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Stone A. J. A kinetic method for investigating hypothetical models of the sodium pump. Biochim Biophys Acta. 1966 Oct 10;126(2):321–329. doi: 10.1016/0926-6585(66)90069-0. [DOI] [PubMed] [Google Scholar]
  3. Banerjee S. P., Wong S. M., Khanna V. K., Sen A. K. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. I. Effects on sodium-sensitive phosphorylation and potassium-sensitive dephosphorylation. Mol Pharmacol. 1972 Jan;8(1):8–17. [PubMed] [Google Scholar]
  4. Banerjee S. P., Wong S. M., Sen A. K. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. II. Effects of sodium-activated transphosphorylation. Mol Pharmacol. 1972 Jan;8(1):18–29. [PubMed] [Google Scholar]
  5. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  6. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta. 1963 Feb 12;67:188–196. doi: 10.1016/0006-3002(63)91816-x. [DOI] [PubMed] [Google Scholar]
  7. Cavieres J. D., Ellory J. C. Allosteric inhibition of the sodium pump by external sodium. Nature. 1975 May 22;255(5506):338–340. doi: 10.1038/255338a0. [DOI] [PubMed] [Google Scholar]
  8. Cha S. A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J Biol Chem. 1968 Feb 25;243(4):820–825. [PubMed] [Google Scholar]
  9. Chipperfield A. R., Whittam R. The connexion between the ion-binding sites of the sodium pump. J Physiol. 1976 Sep;260(2):371–385. doi: 10.1113/jphysiol.1976.sp011520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fahn S., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. I. An associated sodium-activated transphosphorylation. J Biol Chem. 1966 Apr 25;241(8):1882–1889. [PubMed] [Google Scholar]
  11. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garrahan P. J., Glynn I. M. Facftors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchanges catalysed by the sodium pump. J Physiol. 1967 Sep;192(1):189–216. doi: 10.1113/jphysiol.1967.sp008296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glynn I. M., Karlish S. J. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular sodium. J Physiol. 1976 Apr;256(2):465–496. doi: 10.1113/jphysiol.1976.sp011333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hobbs A. S., Dunham P. B. Letter: Evidence for two sodium sites on the external aspect of Na-K pump in human erythrocytes. Nature. 1976 Apr 15;260(5552):651–652. doi: 10.1038/260651a0. [DOI] [PubMed] [Google Scholar]
  18. Hoffman P. G., Tosteson D. C. Active sodium and potassium transport in high potassium and low potassium sheep red cells. J Gen Physiol. 1971 Oct;58(4):438–466. doi: 10.1085/jgp.58.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Inturrisi C. E., Titus E. Kinetics of oligomycin inhibition of sodium- and potassium-activated adenosine triphosphatase from beef brain. Mol Pharmacol. 1968 Nov;4(6):591–599. [PubMed] [Google Scholar]
  20. Jorgensen P. L. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta. 1975 Sep 2;401(3):399–415. doi: 10.1016/0005-2736(75)90239-4. [DOI] [PubMed] [Google Scholar]
  21. Kropp D. L., Sachs J. R. Kinetics of the inhibition of the Na-K pump by tetrapropylammonium chloride. J Physiol. 1977 Jan;264(2):471–487. doi: 10.1113/jphysiol.1977.sp011678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mårdh S. Bovine brain Na+, K+-stimulated ATP phosphohydrolase studied by a rapid-mixing technique. Detection of a transient [32P]phosphoenzyme formed in the presence of potassium ions. Biochim Biophys Acta. 1975 Jun 24;391(2):464–473. doi: 10.1016/0005-2744(75)90270-3. [DOI] [PubMed] [Google Scholar]
  23. POST R. L., SEN A. K., ROSENTHAL A. S. A PHOSPHORYLATED INTERMEDIATE IN ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT ACROSS KIDNEY MEMBRANES. J Biol Chem. 1965 Mar;240:1437–1445. [PubMed] [Google Scholar]
  24. Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
  25. Post R. L., Kume S., Tobin T., Orcutt B., Sen A. K. Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J Gen Physiol. 1969 Jul 1;54(1):306–326. doi: 10.1085/jgp.54.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robinson J. D. Effects of oligomycin on the (Na + + K + )-dependent adenosine triphosphatase. Mol Pharmacol. 1971 May;7(3):238–246. [PubMed] [Google Scholar]
  27. Sachs J. R., Ellory J. C., Kropp D. L., Dunham P. B., Hoffman J. F. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J Gen Physiol. 1974 Apr;63(4):389–414. doi: 10.1085/jgp.63.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sachs J. R. Kinetic evaluation of the Na-K pump reaction mechanism. J Physiol. 1977 Dec;273(2):489–514. doi: 10.1113/jphysiol.1977.sp012106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sachs J. R. Kinetics of the inhibition of the Na-K pump by external sodium. J Physiol. 1977 Jan;264(2):449–470. doi: 10.1113/jphysiol.1977.sp011677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sachs J. R. Sodium movements in the human red blood cell. J Gen Physiol. 1970 Sep;56(3):322–341. doi: 10.1085/jgp.56.3.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simons T. J. Potassium: potassium exchange catalysed by the sodium pump in human red cells. J Physiol. 1974 Feb;237(1):123–155. doi: 10.1113/jphysiol.1974.sp010474. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES