Abstract
1. The redox state of mitochondrial NAD was monitored fluorometrically as a function of active ion transport work in the isolated doubly perfused bullfrog kidney. 2. Initial experiments to measure the O2 consumption (QO2) of small pieces from the bullfrog kidney gave a basal QO2 - 3.0 (+/- 0.43) nmoles O2/mg dry wt. min. Addition of 50 microM-ouabain inhibited QO2 by 72.7%. Subsequent addition of the mitochondrial uncoupler 1799 stimulated QO2 by 226%, while cyanide totally inhibited respiration. 3. Ion transport functional parameters and NADH fluorescence were simultaneously monitored during systematic reductions in perfusate PO2 to test the sufficiency of O2 delivery to the isolated perfused frog kidney. No significant changes in transport functions or fluorescence were observed until the PO2 dropped to 184 mm Hg or below. O2 tensions of 184 mm Hg or below caused decreases in G.F.R. and transport functions which were accompanied by an increase in NADH fluorescence. The lack of changes in kidney function in the PO2 range 550-340 mmHg suggested that the tissue is adequately oxygenated at the normal perfusate PO2 of 550 mmHg. 4. The relationship between active transport rate and NAD redox levels was studied by increasing transport work (via increased G.F.R. or ADH) or by decreasing transport work (via decreased G.F.R. or ouabain) while simultaneously monitoring the NAD redox state of the intact tissue fluorometrically. In all cases, an increase in work caused a net oxidation of NAD while a decrease in work caused a reduction of NAD. 5. It is concluded that the NADH fluorescence responses are indicative of mitochondrial active to passive transitions in response to changes in active transport work. The aerobic production of ATP and the normally functioning Na-K-ATPase appear to be essential to maintain active transport and to elicit the appropriate state transitions. Thus, ATP (and, possibly, ADP and Pi) may be part of the coupling mechanism linking active ion transport and aerobic metabolic rate in the kidney.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreoli T. E., Schafer J. A. Mass transport across cell membranes: the effects of antidiuretic hormone on water and solute flows in epithelia. Annu Rev Physiol. 1976;38:451–500. doi: 10.1146/annurev.ph.38.030176.002315. [DOI] [PubMed] [Google Scholar]
- Bainbridge F. A., Menzies J. A., Collins S. H. The formation of urine in the frog. J Physiol. 1914 Jul 14;48(4):233–243. doi: 10.1113/jphysiol.1914.sp001658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balaban R. S., Mandel L. J., Soltoff S. P., Storey J. M. Coupling of active ion transport and aerobic respiratory rate in isolated renal tubules. Proc Natl Acad Sci U S A. 1980 Jan;77(1):447–451. doi: 10.1073/pnas.77.1.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balaban R. S., Soltoff S. P., Storey J. M., Mandel L. J. Improved renal cortical tubule suspension: spectrophotometric study of O2 delivery. Am J Physiol. 1980 Jan;238(1):F50–F59. doi: 10.1152/ajprenal.1980.238.1.F50. [DOI] [PubMed] [Google Scholar]
- Blond D. M., Whittam R. The regulation of kidney respiration by sodium and potassium ions. Biochem J. 1964 Jul;92(1):158–167. doi: 10.1042/bj0920158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B., COHEN P., JOBSIS F., SCHOENER B. Intracellular oxidation-reduction states in vivo. Science. 1962 Aug 17;137(3529):499–508. doi: 10.1126/science.137.3529.499. [DOI] [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
- Chapman J. B. Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J Gen Physiol. 1972 Feb;59(2):135–154. doi: 10.1085/jgp.59.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deeds D. G., Sullivan L. P., Fenton R. A., Tucker J. M., Cuppage F. E. Function and structure of perfused bullfrog kidney. Am J Physiol. 1977 Nov;233(5):F481–F490. doi: 10.1152/ajprenal.1977.233.5.F481. [DOI] [PubMed] [Google Scholar]
- Deeds D. G., Sullivan L. P., Welling D. J. Potassium reabsorption and secretion in the perfused bullfrog kidney. Am J Physiol. 1978 Jul;235(1):F26–F32. doi: 10.1152/ajprenal.1978.235.1.F26. [DOI] [PubMed] [Google Scholar]
- Erecińska M., Stubbs M., Miyata Y., Ditre C. M. Regulation of cellular metabolism by intracellular phosphate. Biochim Biophys Acta. 1977 Oct 12;462(1):20–35. doi: 10.1016/0005-2728(77)90186-4. [DOI] [PubMed] [Google Scholar]
- Franke H., Barlow C. H., Chance B. Oxygen delivery in perfused rat kidney: NADH fluorescence and renal functional state. Am J Physiol. 1976 Oct;231(4):1082–1089. doi: 10.1152/ajplegacy.1976.231.4.1082. [DOI] [PubMed] [Google Scholar]
- HOSHIKO T., SWANSON R. E., VISSCHER M. B. Excretion of Na22 and K42 by the perfused bullfrog kidney and the effect of some poisons. Am J Physiol. 1956 Mar;184(3):542–547. doi: 10.1152/ajplegacy.1956.184.3.542. [DOI] [PubMed] [Google Scholar]
- Ichikawa I., Brenner B. M. Evidence for glomerular actions of ADH and dibutyryl cyclic AMP in the rat. Am J Physiol. 1977 Aug;233(2):F102–F117. doi: 10.1152/ajprenal.1977.233.2.F102. [DOI] [PubMed] [Google Scholar]
- Irish J. M., 3rd, Dantzler W. H. PAH transport and fluid absorption by isolated perfused frog proximal renal tubules. Am J Physiol. 1976 Jun;230(6):1509–1516. doi: 10.1152/ajplegacy.1976.230.6.1509. [DOI] [PubMed] [Google Scholar]
- Jöbsis F. F., Duffield J. C. Oxidative and glycolytic recovery metabolism in muscle. J Gen Physiol. 1967 Mar;50(4):1009–1047. doi: 10.1085/jgp.50.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jöbsis F. F., O'Connor M., Vitale A., Vreman H. Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J Neurophysiol. 1971 Sep;34(5):735–749. doi: 10.1152/jn.1971.34.5.735. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J., HIMMELHOCH S. R. Seasonal and starvation-induced changes in enzymatic pattern of frog nephron. Am J Physiol. 1961 Nov;201:781–785. doi: 10.1152/ajplegacy.1961.201.5.781. [DOI] [PubMed] [Google Scholar]
- Kiil F. Renal energy metabolism and regulation of sodium reabsorption. Kidney Int. 1977 Mar;11(3):153–160. doi: 10.1038/ki.1977.23. [DOI] [PubMed] [Google Scholar]
- LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Long W. S. Renal handling of urea in Rana catesbeiana. Am J Physiol. 1973 Feb;224(2):482–490. doi: 10.1152/ajplegacy.1973.224.2.482. [DOI] [PubMed] [Google Scholar]
- Nagel W. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin. J Membr Biol. 1978 Sep 18;42(2):99–122. doi: 10.1007/BF01885366. [DOI] [PubMed] [Google Scholar]
- Rosenthal M., Jöbsis F. F. Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J Neurophysiol. 1971 Sep;34(5):750–762. doi: 10.1152/jn.1971.34.5.750. [DOI] [PubMed] [Google Scholar]
- Stoner L. C. Isolated perfused amphibian renal tubules: the diluting segment. Am J Physiol. 1977 Nov;233(5):F438–F444. doi: 10.1152/ajprenal.1977.233.5.F438. [DOI] [PubMed] [Google Scholar]
- WHITTAM R. Active cation transport as a pace-maker of respiration. Nature. 1961 Aug 5;191:603–604. doi: 10.1038/191603a0. [DOI] [PubMed] [Google Scholar]
- Wilkinson H. L., Deeds D. G., Sullivan L. P., Welling D. J. Effects of ouabain on potassium transport in the perfused bullfrog kidney. Am J Physiol. 1979 Feb;236(2):F175–F183. doi: 10.1152/ajprenal.1979.236.2.F175. [DOI] [PubMed] [Google Scholar]