Abstract
1. Regular perturbation theory was used to obtain analytical solutions for the time course of membrane current decay following voltage-clamp depolarizing pulses when both time-dependent K conductance mechanisms and the process of K accumulation in extracellular spaces are present. These solutions apply when the current and K concentration changes are small enough for linear relations to be assumed between current and K concentration. 2. In the case of a single Hodgkin-Huxley type conductance variable with time constant tau chi the presence of an accumulation process which, by itself, would produce a current decay with time constant tau alpha, induces the appearance of two infinite sets of components with decreasing time constants (1/(n+1/tau chi) and 1/(1/tau alpha + n/tau chi), where n is integer), and decreasing magnitudes. 3. The analytical solutions are used to investigate the range of conditions over which semi-exponential (curve-stripping) analysis of current decay tails may give useful information on the kinetics of current change. It is shown that, except at very large decay tail amplitudes, the method may give a good estimate of the true time constants of conductance decay even when the currents are assumed to be strongly dependent on external K concentration. 4. The method introduces error in current amplitude, but over the range in which curve-stripping gives useful results, the direct distortion of activation curves by variations in external K concentration is fairly small. However, as the current decay becomes grossly distorted in its time course by accumulation, so does the activation curve. The effects are very similar both to those obtained using numerical computation without linearization, and to those obtained experimentally. 5. Even with a large dependence of current on external K concentration the linear model does not reproduce i chi, fast as a perturbation of i chi, slow by K accumulation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attwell D., Eisner D., Cohen I. Voltage clamp and tracer flux data: effects of a restricted extra-cellular space. Q Rev Biophys. 1979 Aug;12(3):213–261. doi: 10.1017/s0033583500005448. [DOI] [PubMed] [Google Scholar]
- Brown H. F., Clark A., Noble S. J. Analysis of pace-maker and repolarization currents in frog atrial muscle. J Physiol. 1976 Jul;258(3):547–577. doi: 10.1113/jphysiol.1976.sp011435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown H. F., Clark A., Noble S. J. Identification of the pace-maker current in frog atrium. J Physiol. 1976 Jul;258(3):521–545. doi: 10.1113/jphysiol.1976.sp011434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown H. F., Giles W., Noble S. J. Membrane currents underlying activity in frog sinus venosus. J Physiol. 1977 Oct;271(3):783–816. doi: 10.1113/jphysiol.1977.sp012026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown H., DiFrancesco D., Noble D., Noble S. The contribution of potassium accumulation to outward currents in frog atrium. J Physiol. 1980 Sep;306:127–149. doi: 10.1113/jphysiol.1980.sp013388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiFrancesco D., Noma A., Trautwein W. Kinetics and magnitude of the time-dependent potassium current in the rabbit sinoatrial node: effect of external potassium. Pflugers Arch. 1979 Sep;381(3):271–279. doi: 10.1007/BF00583259. [DOI] [PubMed] [Google Scholar]
- Katzung B. G., Morgenstern J. A. Effects of extracellular potassium on ventricular automaticity and evidence for a pacemaker current in mammalian ventricular myocardium. Circ Res. 1977 Jan;40(1):105–111. doi: 10.1161/01.res.40.1.105. [DOI] [PubMed] [Google Scholar]
- McDonald T. F., Trautwein W. The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol. 1978 Jan;274:217–246. doi: 10.1113/jphysiol.1978.sp012144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble D., Tsien R. W. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):205–231. doi: 10.1113/jphysiol.1969.sp008689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble S. J. Potassium accumulation and depletion in frog atrial muscle. J Physiol. 1976 Jul;258(3):579–613. doi: 10.1113/jphysiol.1976.sp011436. [DOI] [PMC free article] [PubMed] [Google Scholar]