Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Apr;266(3):613–646. doi: 10.1113/jphysiol.1977.sp011785

Variation in the action spectrum of erythrolabe among deuteranopes.

M Alpern, E N Pugh Jr
PMCID: PMC1283583  PMID: 301186

Abstract

1. Eight deuteranopes matched a mixture of a monochromatic light on the long wave side of the neutral point and a violet (450 nm) primary to a fixed white as well as a monochromatic light on the short wave side of the neutral point mixed with a red (650 nm) primary, to the same white. For lambda greater than 530 nm, the former set of matches defined the action spectrum of the long wave sensitive foveal cones, and for lambda less than 480 nm, the latter that of the short wave sensitive cones. 2. Individual differences in the former matches were approximately correlated with the respective ratio of the sensitivities of the wave-length of the anomaloscope primaries, in a way that individual differences of the latter were not. 3. Assuming that eye media differences alone account for the differences in long wave sensitive foveal action spectra, the spectral reflectivity of the foveal fundus was predicted for these deuteranopes. The prediction is inconsistent with measurement. 4. Thirteen deuteranopes matched monochromatic spectral lights with a green (535 nm) and a blue (460 nm) primary. The result were analysed by von Kries' method in which differences in matching due to differences in eye media absorption are obviated. The matches of five differed significantly from one another when so analysed. It was concluded that at least one of two action spectra of the foveal cones of every one of these five differed from that of all of the others. 5. The canon that deuteranopes accept normal colour matches was evaluated by confronting a single normal with five deuternopes in the analytical anomaloscope of Baker & Rushton, set in the mode of each of the five in turn. Obvious differences existed between this normal's matches and those of four of five deuteranopes. 6. Explanations for differences in the spectrum of erythrolabe in different deuteranopes are evaluated. The possibilities that all have the identical visual pigment but (a) in cones with different optical funnelling properties or (b) in different optical densities are considered. Preliminary results are not in agreement with the expectations of either of these ideas. 7. It is suggested that the visual pigment in the foveal long wave sensitive cones of different deuternopes (and of different normals) may have different extinction spectra. The idea is consistent with micro-spectrophotometric measurements of rhodopsin in individual rods from different frogs (Bowmaker, Loew & Leibman, 1975).

Full text

PDF
646

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern M., Bastian B., Pugh E. N., Jr, Gras W. Altered ocular pigments, photostable and labile: two causes of deuteranomalous trichromacy. Mod Probl Ophthalmol. 1976;17:273–291. [PubMed] [Google Scholar]
  2. Alpern M., Maaseidvaag F., Oba N. The kinetics of cone visual pigments in man. Vision Res. 1971 Jun;11(6):539–549. doi: 10.1016/0042-6989(71)90075-7. [DOI] [PubMed] [Google Scholar]
  3. Alpern M., Moeller J. The red and green cone visual pigments of deuternomalous trichromacy. J Physiol. 1977 Apr;266(3):647–675. doi: 10.1113/jphysiol.1977.sp011786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alpern M., Pugh E. N., Jr The density and photosensitivity of human rhodopsin in the living retina. J Physiol. 1974 Mar;237(2):341–370. doi: 10.1113/jphysiol.1974.sp010485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alpern M. Tritanopia. Am J Optom Physiol Opt. 1976 Jul;53(7):340–349. doi: 10.1097/00006324-197607000-00003. [DOI] [PubMed] [Google Scholar]
  6. Alpern M., Wake T. Cone pigments in human deutan colour vision defects. J Physiol. 1977 Apr;266(3):595–612. doi: 10.1113/jphysiol.1977.sp011784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BAKER H. D., RUSHTON W. A. THE RED-SENSITIVE PIGMENT IN NORMAL CONES. J Physiol. 1965 Jan;176:56–72. doi: 10.1113/jphysiol.1965.sp007535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. BEDFORD R. E., WYSZECKI G. Axial chromatic aberration of the human eye. J Opt Soc Am. 1957 Jun;47(6):564–565. doi: 10.1364/josa.47.0564_1. [DOI] [PubMed] [Google Scholar]
  9. BRINDLEY G. S., WILLMER E. N. The reflexion of light from the macular and peripheral fundus oculi in man. J Physiol. 1952 Mar;116(3):350–356. doi: 10.1113/jphysiol.1952.sp004709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baylor D. A., Fettiplace R. Light path and photon capture in turtle photoreceptors. J Physiol. 1975 Jun;248(2):433–464. doi: 10.1113/jphysiol.1975.sp010983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bowmaker J. K., Loew E. R., Liebman P. A. Variation in the lambdamax of rhodopsin from individual frogs. Vision Res. 1975 Aug-Sep;15:997–1003. doi: 10.1016/0042-6989(75)90242-4. [DOI] [PubMed] [Google Scholar]
  12. ENOCH J. M., STILES W. S. The colour change of monochromatic light with retinal angle of incidence. Optom Wkly. 1961 Oct;8(52):329–358. doi: 10.1080/713826396. [DOI] [PubMed] [Google Scholar]
  13. Hood C., Rushton W. A. The Florida retinal densitometer. J Physiol. 1971 Aug;217(1):213–229. doi: 10.1113/jphysiol.1971.sp009567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. King-Smith P. E. The optical density of erythrolabe determined by a new method. J Physiol. 1973 May;230(3):551–560. doi: 10.1113/jphysiol.1973.sp010203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. King-Smith P. E. The optical density of erythrolabe determined by retinal densitometry using the self-screening method. J Physiol. 1973 May;230(3):535–549. doi: 10.1113/jphysiol.1973.sp010202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Makous W. L. A transient Stiles-Crawford effect. Vision Res. 1968 Oct;8(10):1271–1284. doi: 10.1016/0042-6989(68)90049-7. [DOI] [PubMed] [Google Scholar]
  17. Miller S. S. Psychophysical estimates of visual pigment densities in red-green dichromats. J Physiol. 1972 May;223(1):89–107. doi: 10.1113/jphysiol.1972.sp009836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mitchell D. E., Rushton W. A. The red-green pigments of normal vision. Vision Res. 1971 Oct;11(10):1045–1056. doi: 10.1016/0042-6989(71)90111-8. [DOI] [PubMed] [Google Scholar]
  19. Piantanida T. P., Sperling H. G. Isolation of a third chromatic mechanism in the deuteranomalous observer. Vision Res. 1973 Nov;13(11):2049–2058. doi: 10.1016/0042-6989(73)90181-8. [DOI] [PubMed] [Google Scholar]
  20. Pokorny J., Smith V. C., Katz I. Derivation of the photopigment absorption spectra in anomalous trichromats. J Opt Soc Am. 1973 Feb;63(2):232–237. doi: 10.1364/josa.63.000232. [DOI] [PubMed] [Google Scholar]
  21. Rushton W. A., Powell D. S., White K. D. The spectral sensitivity of "red" and "green" cones in the normal eye. Vision Res. 1973 Nov;13(11):2003–2015. doi: 10.1016/0042-6989(73)90178-8. [DOI] [PubMed] [Google Scholar]
  22. SAID F. S., WEALE R. A. The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologia. 1959;3:213–231. doi: 10.1159/000210900. [DOI] [PubMed] [Google Scholar]
  23. Safir A., Hyams L., Philpot J. The retinal directional effect: a model based on the gaussian distribution of cone orientations. Vision Res. 1971 Aug;11(8):819–831. doi: 10.1016/0042-6989(71)90004-6. [DOI] [PubMed] [Google Scholar]
  24. Smith V. C., Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res. 1975 Feb;15(2):161–171. doi: 10.1016/0042-6989(75)90203-5. [DOI] [PubMed] [Google Scholar]
  25. THOMSON L. C., WRIGHT W. D. The convergence of the tritanopic confusion loci and the derivation of the fundamental response functions. J Opt Soc Am. 1953 Oct;43(10):890–894. doi: 10.1364/josa.43.000890. [DOI] [PubMed] [Google Scholar]
  26. Vos J. J., Walraven P. L. On the derivation of the foveal receptor primaries. Vision Res. 1971 Aug;11(8):799–818. doi: 10.1016/0042-6989(71)90003-4. [DOI] [PubMed] [Google Scholar]
  27. Wright W. D. The breakdown of a colour match with high intensities of adaptation. J Physiol. 1936 Jun 10;87(1):23–33. doi: 10.1113/jphysiol.1936.sp003385. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES