Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Aug;269(3):753–766. doi: 10.1113/jphysiol.1977.sp011927

Modulation of cyclic nucleotide levels in peripheral nerve without effect on resting or compound action potentials.

J P Horn, D A McAfee
PMCID: PMC1283738  PMID: 197234

Abstract

1. Cyclic nucleotide levels and compound action potential magnitudes were measured in frog sciatic nerves following exposure to carbachol, isoprenaline and cyclic nucleotide related substances. 2. The resting cyclic AMP level was 2-4 p-mole/mg protein and the cyclic GMP level was 0-27 p-mole/mg protein in desheathed nerves. 3. Isoprenaline (100 micrometer) caused a twofold increase in cyclic AMP without affecting cyclic GMP levels. Carbachol (100 micrometer) caused a twofold increase in cyclic GMP without affecting cyclic AMP levels. 4. The phosphodiesterase inhibitor theophylline (5 mM) augmented both cyclic AMP and cyclic GMP. 5. The magnitude of the resting or compound action potential was not affected by isoprenaline, carbachol, or phosphodiesterase inhibitors. 6. The cyclic nucleotides and their butyryl derivatives did not affect the magnitude of the resting or compound action potential, either when applied alone or in the presence of a phosphodiesterase inhibitor. 7. In contrast to sympatic tissue we conclude that hormone mediated cyclic nucleotide metabolism in peripheral nerve is unrelated to control of axonal excitability.

Full text

PDF
756

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMETT C. J., RITCHIE J. M. The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by an anticholinesterase. J Physiol. 1960 Jun;152:141–158. doi: 10.1113/jphysiol.1960.sp006476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloom F. E. The role of cyclic nucleotides in central synaptic function. Rev Physiol Biochem Pharmacol. 1975;74:1–103. doi: 10.1007/3-540-07483-x_19. [DOI] [PubMed] [Google Scholar]
  3. Boegman R. J., Wood P. L. Monoamines as possible mediators in the regulation of fast axoplasmic flow. J Neurochem. 1976 Apr;26(4):737–740. doi: 10.1111/j.1471-4159.1976.tb04446.x. [DOI] [PubMed] [Google Scholar]
  4. CRESCITELLI F. Nerve sheath as a barrier to the action of certain substances. Am J Physiol. 1951 Aug;166(2):229–240. doi: 10.1152/ajplegacy.1951.166.2.229. [DOI] [PubMed] [Google Scholar]
  5. Costa E., Guidotti A., Hanbauer I. Do cyclic nucleotides promote the trans-synaptic induction of tyrosine hydroxylase? Life Sci. 1974 Apr 1;14(7):1169–1188. doi: 10.1016/0024-3205(74)90425-1. [DOI] [PubMed] [Google Scholar]
  6. Dretchen K. L., Standaert F. G., Skirboll L. R., Morgenroth V. H., 3rd Evidence for a prejunctional role of cyclic nucleotides in neuromuscular transmission. Nature. 1976 Nov 4;264(5581):79–81. doi: 10.1038/264079a0. [DOI] [PubMed] [Google Scholar]
  7. FENG T. P., LIU Y. M. The connective tissue sheath of the nerve as effective diffusion barrier. J Cell Physiol. 1949 Aug;34(1):1–16. doi: 10.1002/jcp.1030340102. [DOI] [PubMed] [Google Scholar]
  8. Goodman D. B., Rasmussen H., DiBella F., Guthrow C. E., Jr Cyclic adenosine 3':5'-monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc Natl Acad Sci U S A. 1970 Oct;67(2):652–659. doi: 10.1073/pnas.67.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greengard P., Kebabian J. W. Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed Proc. 1974 Apr;33(4):1059–1067. [PubMed] [Google Scholar]
  10. Greengard P. Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature. 1976 Mar 11;260(5547):101–108. doi: 10.1038/260101a0. [DOI] [PubMed] [Google Scholar]
  11. Kalix P., McAfee D. A., Schorderet M., Greengard P. Pharmacological analysis of synaptically mediated increase in cyclic adenosine monophosphate in rabbit superior cervical ganglion. J Pharmacol Exp Ther. 1974 Mar;188(3):676–687. [PubMed] [Google Scholar]
  12. Kebabian J. W., Steiner A. L., Greengard P. Muscarinic cholinergic regulation of cyclic guanosine 3,5-monophosphate in autonomic ganglia: possible role in synaptic transmission. J Pharmacol Exp Ther. 1975 May;193(2):474–488. [PubMed] [Google Scholar]
  13. Kosterlitz H. W., Lees G. M., Wallis D. I. Resting and action potentials recorded by the sucrose-gap method in the superior cervical ganglion of the rabbit. J Physiol. 1968 Mar;195(1):39–53. doi: 10.1113/jphysiol.1968.sp008445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lake N., Jordan L. M. Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science. 1974 Feb 15;183(4125):663–664. doi: 10.1126/science.183.4125.663. [DOI] [PubMed] [Google Scholar]
  16. McAfee D. A., Greengard P. Adenosine 3',5'-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science. 1972 Oct;178(58):310–312. doi: 10.1126/science.178.4058.310. [DOI] [PubMed] [Google Scholar]
  17. Ritchie J. M., Greengard P. On the mode of action of local anesthetics. Annu Rev Pharmacol. 1966;6:405–430. doi: 10.1146/annurev.pa.06.040166.002201. [DOI] [PubMed] [Google Scholar]
  18. Siggins G. R., Oliver A. P., Hoffer B. J., Bloom F. E. Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science. 1971 Jan 15;171(3967):192–194. doi: 10.1126/science.171.3967.192. [DOI] [PubMed] [Google Scholar]
  19. Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steiner A. L. Radioimmunoassay for the cyclic nucleotides. Pharmacol Rev. 1973 Jun;25(2):309–313. [PubMed] [Google Scholar]
  21. Vande Berg J. S. Inhibitory effects of dibutyryl and cyclic AMP on the compound action potential in the frog (Rana pipiens) sciatic nerve. Experientia. 1974 Sep 15;30(9):1025–1027. doi: 10.1007/BF01938988. [DOI] [PubMed] [Google Scholar]
  22. Weight F. F., Petzold G., Greengard P. Guanosine 3',5'-monophosphate in sympathetic ganglia: increase assoicated with synaptic transmission. Science. 1974 Dec 6;186(4167):942–944. doi: 10.1126/science.186.4167.942. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES