Abstract
The voltage dependence of light-induced proton pumping was studied with bacteriorhodopsin (bR) from Halobacterium salinarum, expressed in the plasma membrane of oocytes from Xenopus laevis in the range -160 mV to +60 mV at different light intensities. Depending on the applied field, the quenching effect by blue light, which bypasses the normal photo and transport cycle, is drastically increased at inhibiting (negative) potentials, and is diminished at pump current increasing (positive) potentials. At any potential, two processes with different time constants for the M --> bR decay of approximately 5 ms (tau1) and approximately 20 ms (tau2) are obtained. At pump-inhibiting potentials, a third, long-lasting process with tau3 approximately 300 ms at neutral pH is observed. The fast processes (tau1, tau2) can be assigned to the decay of M2 in the normal pump cycle, i.e., to the reprotonation of the Schiff base via the cytoplasmic side, whereas tau3 is due to the decay of M1 without net pumping, i.e., the reprotonation of the Schiff base via the extracellular side. The results are supported by determination of photocurrents induced by bR on planar lipid films. The pH dependence of the slow decay of M1 is fully in agreement with the interpretation that the reprotonation of the Schiff base occurs from the extracellular side. The results give strong evidence that an externally applied electrical field changes the ratio of the M1 and the M2 intermediate. As a consequence, the transport cycle branches into a nontransporting cycle at negative potentials. This interpretation explains the current-voltage behavior of bR on a new basis, but agrees with the isomerisation, switch, transfer model for vectorial transport.
Full Text
The Full Text of this article is available as a PDF (113.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bamberg E., Dencher N. A., Fahr A., Heyn M. P. Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7502–7506. doi: 10.1073/pnas.78.12.7502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bamberg E., Tittor J., Oesterhelt D. Light-driven proton or chloride pumping by halorhodopsin. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):639–643. doi: 10.1073/pnas.90.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braun D., Dencher N. A., Fahr A., Lindau M., Heyn M. P. Nonlinear voltage dependence of the light-driven proton pump current of bacteriorhodopsin. Biophys J. 1988 Apr;53(4):617–621. doi: 10.1016/S0006-3495(88)83140-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butt H. J., Fendler K., Bamberg E., Tittor J., Oesterhelt D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 1989 Jun;8(6):1657–1663. doi: 10.1002/j.1460-2075.1989.tb03556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dancsházy Z., Karvaly B. Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic study. FEBS Lett. 1976 Dec 15;72(1):136–138. doi: 10.1016/0014-5793(76)80829-0. [DOI] [PubMed] [Google Scholar]
- Drachev L. A., Kaulen A. D., Khitrina L. V., Skulachev V. P. Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin. Eur J Biochem. 1981 Jul;117(3):461–470. doi: 10.1111/j.1432-1033.1981.tb06361.x. [DOI] [PubMed] [Google Scholar]
- Druckmann S., Ottolenghi M., Pande A., Pande J., Callender R. H. Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry. 1982 Sep 28;21(20):4953–4959. doi: 10.1021/bi00263a019. [DOI] [PubMed] [Google Scholar]
- Dubrovskii V. T., Balashov S. P., Sineshchekov O. A., Chekulaeva L. N., Litvin F. F. Fotoindutsirovannye izmeneniia kvantovykh vykhodov fotokhimicheskogo tsikla prevrashchenii bakteriorodopsina i transmembrannogo perenosa protonov v kletkakh Halobacterium halobium. Biokhimiia. 1982 Jul;47(7):1230–1240. [PubMed] [Google Scholar]
- Gerwert K., Souvignier G., Hess B. Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc Natl Acad Sci U S A. 1990 Dec 15;87(24):9774–9778. doi: 10.1073/pnas.87.24.9774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
- Groma G. I., Helgerson S. L., Wolber P. K., Beece D., Dancsházy Z., Keszthelyi L., Stoeckenius W. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modeling of the M----bR reactions. Biophys J. 1984 May;45(5):985–992. doi: 10.1016/S0006-3495(84)84243-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grygorczyk R., Hanke-Baier P., Schwarz W., Passow H. Measurement of erythroid band 3 protein-mediated anion transport in mRNA-injected oocytes of Xenopus laevis. Methods Enzymol. 1989;173:453–466. doi: 10.1016/s0076-6879(89)73032-9. [DOI] [PubMed] [Google Scholar]
- Haupts U., Bamberg E., Oesterhelt D. Different modes of proton translocation by sensory rhodopsin I. EMBO J. 1996 Apr 15;15(8):1834–1841. [PMC free article] [PubMed] [Google Scholar]
- Haupts U., Tittor J., Bamberg E., Oesterhelt D. General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochemistry. 1997 Jan 7;36(1):2–7. doi: 10.1021/bi962014g. [DOI] [PubMed] [Google Scholar]
- Heberle J., Oesterhelt D., Dencher N. A. Decoupling of photo- and proton cycle in the Asp85-->Glu mutant of bacteriorhodopsin. EMBO J. 1993 Oct;12(10):3721–3727. doi: 10.1002/j.1460-2075.1993.tb06049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellingwerf K. J., Schuurmans J. J., Westerhoff H. V. Demonstration of coupling between the protonmotive force across bacteriorhodopsin and the flow through its photochemical cycle. FEBS Lett. 1978 Aug 15;92(2):181–186. doi: 10.1016/0014-5793(78)80749-2. [DOI] [PubMed] [Google Scholar]
- Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
- Hildebrandt V., Fendler K., Heberle J., Hoffmann A., Bamberg E., Büldt G. Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3578–3582. doi: 10.1073/pnas.90.8.3578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch M. H., Dencher N. A., Oesterhelt D., Plöhn H. J., Rapp G., Büldt G. Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. EMBO J. 1991 Mar;10(3):521–526. doi: 10.1002/j.1460-2075.1991.tb07978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korenstein R., Hess B., Kuschmitz D. Branching reactions in the photocycle of bacteriorhodopsin. FEBS Lett. 1978 Sep 15;93(2):266–270. doi: 10.1016/0014-5793(78)81118-1. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K. Bacteriorhodopsin as a model for proton pumps. Nature. 1995 Jun 8;375(6531):461–463. doi: 10.1038/375461a0. [DOI] [PubMed] [Google Scholar]
- Lukashev E. P., Vozary E., Kononenko A. A., Rubin A. B. Electric field promotion of the bacteriorhodopsin BR570 to BR412 photoconversion in films of Halobacterium halobium purple membranes. Biochim Biophys Acta. 1980 Sep 5;592(2):258–266. doi: 10.1016/0005-2728(80)90186-3. [DOI] [PubMed] [Google Scholar]
- Mathies R. A., Lin S. W., Ames J. B., Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem. 1991;20:491–518. doi: 10.1146/annurev.bb.20.060191.002423. [DOI] [PubMed] [Google Scholar]
- Michel H., Oesterhelt D. Light-induced changes of the pH gradient and the membrane potential in H. halobium. FEBS Lett. 1976 Jun 1;65(2):175–178. doi: 10.1016/0014-5793(76)80473-5. [DOI] [PubMed] [Google Scholar]
- Nagel G., Möckel B., Büldt G., Bamberg E. Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping. FEBS Lett. 1995 Dec 18;377(2):263–266. doi: 10.1016/0014-5793(95)01356-3. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Hess B. Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Eur J Biochem. 1973 Aug 17;37(2):316–326. doi: 10.1111/j.1432-1033.1973.tb02990.x. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Tittor J., Bamberg E. A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr. 1992 Apr;24(2):181–191. doi: 10.1007/BF00762676. [DOI] [PubMed] [Google Scholar]
- Ormos P., Dancsházy Z., Karvaly B. Mechanism of generation and regulation of photopotential by bacteriorhodopsin in bimolecular lipid membrane. Biochim Biophys Acta. 1978 Aug 8;503(2):304–315. doi: 10.1016/0005-2728(78)90190-1. [DOI] [PubMed] [Google Scholar]
- Ormos P., Dancsházy Z., Keszthelyi L. Electric response of a back photoreaction in the bacteriorhodopsin photocycle. Biophys J. 1980 Aug;31(2):207–213. doi: 10.1016/S0006-3495(80)85051-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quintanilha A. T. Control of the photocycle in bacteriorhodopsin by electrochemical gradients. FEBS Lett. 1980 Aug 11;117(1):8–12. doi: 10.1016/0014-5793(80)80901-x. [DOI] [PubMed] [Google Scholar]
- Richter H. T., Brown L. S., Needleman R., Lanyi J. K. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry. 1996 Apr 2;35(13):4054–4062. doi: 10.1021/bi952883q. [DOI] [PubMed] [Google Scholar]
- Richter H. T., Needleman R., Lanyi J. K. Perturbed interaction between residues 85 and 204 in Tyr-185-->Phe and Asp-85-->Glu bacteriorhodopsins. Biophys J. 1996 Dec;71(6):3392–3398. doi: 10.1016/S0006-3495(96)79532-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sass H. J., Schachowa I. W., Rapp G., Koch M. H., Oesterhelt D., Dencher N. A., Büldt G. The tertiary structural changes in bacteriorhodopsin occur between M states: X-ray diffraction and Fourier transform infrared spectroscopy. EMBO J. 1997 Apr 1;16(7):1484–1491. doi: 10.1093/emboj/16.7.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulten K., Tavan P. A mechanism for the light-driven proton pump of Halobacterium halobium. Nature. 1978 Mar 2;272(5648):85–86. doi: 10.1038/272085a0. [DOI] [PubMed] [Google Scholar]
- Sheves M., Albeck A., Friedman N., Ottolenghi M. Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues. Proc Natl Acad Sci U S A. 1986 May;83(10):3262–3266. doi: 10.1073/pnas.83.10.3262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tittor J., Schweiger U., Oesterhelt D., Bamberg E. Inversion of proton translocation in bacteriorhodopsin mutants D85N, D85T, and D85,96N. Biophys J. 1994 Oct;67(4):1682–1690. doi: 10.1016/S0006-3495(94)80642-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Váró G., Keszthelyi L. Photoelectric signals from dried oriented purple membranes of Halobacterium halobium. Biophys J. 1983 Jul;43(1):47–51. doi: 10.1016/S0006-3495(83)84322-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Váró G., Lanyi J. K. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. Biochemistry. 1991 May 21;30(20):5008–5015. doi: 10.1021/bi00234a024. [DOI] [PubMed] [Google Scholar]
- Váró G., Lanyi J. K. Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. Biochemistry. 1991 May 21;30(20):5016–5022. doi: 10.1021/bi00234a025. [DOI] [PubMed] [Google Scholar]