Abstract
The elemental composition of rat cardiac muscle was determined with electron probe x-ray microanalysis (EPMA) of rapidly frozen papillary muscles and trabeculae incubated with ryanodine (1 microM) in either 1.2 or 10 mM [Ca2+]o-containing solutions, paced at 0.6 Hz or tetanized at 10 Hz. Total mitochondrial calcium increased significantly, by 4.2 mmol/kg dry weight during a 7 s tetanus, only in muscles tetanized in the presence of 10 mM [Ca2+]o when cytoplasmic Ca2+ is 1-4 microM (Backx, P. H., W.-D. Gao, M. D. Azan-Backx, and E. Marban. 1995. The relationship between contractile force and intracellular [Ca2+] in intact rat trabeculae. J. Gen. Physiol. 105:1-19). Comparison of total mitochondrial with free mitochondrial Ca2+ reported in the literature indicates that the total/free ratio is approximately 6000 at physiological or near-physiological levels of total mitochondrial calcium. Increases in free mitochondrial [Ca2+] consistent with regulation of mitochondrial enzymes should be associated with increases in total mitochondrial calcium detectable with EPMA. However, such increases in mitochondrial calcium occur only as the result of prolonged, unphysiological elevations of cytosolic [Ca2+].
Full Text
The Full Text of this article is available as a PDF (479.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babcock D. F., Herrington J., Goodwin P. C., Park Y. B., Hille B. Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol. 1997 Feb 24;136(4):833–844. doi: 10.1083/jcb.136.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Backx P. H., Gao W. D., Azan-Backx M. D., Marban E. The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae. J Gen Physiol. 1995 Jan;105(1):1–19. doi: 10.1085/jgp.105.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balke C. W., Egan T. M., Wier W. G. Processes that remove calcium from the cytoplasm during excitation-contraction coupling in intact rat heart cells. J Physiol. 1994 Feb 1;474(3):447–462. doi: 10.1113/jphysiol.1994.sp020036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bassani R. A., Bassani J. W., Bers D. M. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J Physiol. 1992;453:591–608. doi: 10.1113/jphysiol.1992.sp019246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bond M., Vadasz G., Somlyo A. V., Somlyo A. P. Subcellular calcium and magnesium mobilization in rat liver stimulated in vivo with vasopressin and glucagon. J Biol Chem. 1987 Nov 15;262(32):15630–15636. [PubMed] [Google Scholar]
- Brandes R., Bers D. M. Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle. Circ Res. 1997 Jan;80(1):82–87. doi: 10.1161/01.res.80.1.82. [DOI] [PubMed] [Google Scholar]
- Broderick R., Somlyo A. P. Calcium and magnesium transport by in situ mitochondria: electron probe analysis of vascular smooth muscle. Circ Res. 1987 Oct;61(4):523–530. doi: 10.1161/01.res.61.4.523. [DOI] [PubMed] [Google Scholar]
- Buchanan R. A., Leapman R. D., O'Connell M. F., Reese T. S., Andrews S. B. Quantitative scanning transmission electron microscopy of ultrathin cryosections: subcellular organelles in rapidly frozen liver and cerebellar cortex. J Struct Biol. 1993 May-Jun;110(3):244–255. doi: 10.1006/jsbi.1993.1027. [DOI] [PubMed] [Google Scholar]
- Busselen P. Suppression of cellular injury during the calcium paradox in rat heart by factors which reduce calcium uptake by mitochondria. Pflugers Arch. 1985 May;404(2):166–171. doi: 10.1007/BF00585414. [DOI] [PubMed] [Google Scholar]
- Di Lisa F., Gambassi G., Spurgeon H., Hansford R. G. Intramitochondrial free calcium in cardiac myocytes in relation to dehydrogenase activation. Cardiovasc Res. 1993 Oct;27(10):1840–1844. doi: 10.1093/cvr/27.10.1840. [DOI] [PubMed] [Google Scholar]
- Eckenhoff R. G., Somlyo A. P. Cardiac mitochondrial calcium content during fatal doxorubicin toxicity. Toxicol Appl Pharmacol. 1989 Jan;97(1):167–172. doi: 10.1016/0041-008x(89)90065-3. [DOI] [PubMed] [Google Scholar]
- Fabiato A. Effects of ryanodine in skinned cardiac cells. Fed Proc. 1985 Dec;44(15):2970–2976. [PubMed] [Google Scholar]
- Friel D. D., Tsien R. W. An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J Neurosci. 1994 Jul;14(7):4007–4024. doi: 10.1523/JNEUROSCI.14-07-04007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonzalez-Serratos H., Somlyo A. V., McClellan G., Shuman H., Borrero L. M., Somlyo A. P. Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: electron probe analysis. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1329–1333. doi: 10.1073/pnas.75.3.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths E. J., Wei S. K., Haigney M. C., Ocampo C. J., Stern M. D., Silverman H. S. Inhibition of mitochondrial calcium efflux by clonazepam in intact single rat cardiomyocytes and effects on NADH production. Cell Calcium. 1997 Apr;21(4):321–329. doi: 10.1016/s0143-4160(97)90120-2. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Gunter T. E., Gunter K. K., Sheu S. S., Gavin C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994 Aug;267(2 Pt 1):C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313. [DOI] [PubMed] [Google Scholar]
- Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
- Gunter T. E., Restrepo D., Gunter K. K. Conversion of esterified fura-2 and indo-1 to Ca2+-sensitive forms by mitochondria. Am J Physiol. 1988 Sep;255(3 Pt 1):C304–C310. doi: 10.1152/ajpcell.1988.255.3.C304. [DOI] [PubMed] [Google Scholar]
- Hansford R. G., Castro F. Intramitochondrial and extramitochondrial free calcium ion concentrations of suspensions of heart mitochondria with very low, plausibly physiological, contents of total calcium. J Bioenerg Biomembr. 1982 Dec;14(5-6):361–376. doi: 10.1007/BF00743064. [DOI] [PubMed] [Google Scholar]
- Isenberg G., Han S., Schiefer A., Wendt-Gallitelli M. F. Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovasc Res. 1993 Oct;27(10):1800–1809. doi: 10.1093/cvr/27.10.1800. [DOI] [PubMed] [Google Scholar]
- Jeneson J. A., Wiseman R. W., Westerhoff H. V., Kushmerick M. J. The signal transduction function for oxidative phosphorylation is at least second order in ADP. J Biol Chem. 1996 Nov 8;271(45):27995–27998. doi: 10.1074/jbc.271.45.27995. [DOI] [PubMed] [Google Scholar]
- Jorgensen A. O., Broderick R., Somlyo A. P., Somlyo A. V. Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: an electron microprobe analysis study. Circ Res. 1988 Dec;63(6):1060–1069. doi: 10.1161/01.res.63.6.1060. [DOI] [PubMed] [Google Scholar]
- Keller E., Moravec C. S., Bond M. Altered subcellular Ca2+ regulation in papillary muscles from cardiomyopathic hamster hearts. Am J Physiol. 1995 May;268(5 Pt 2):H1875–H1883. doi: 10.1152/ajpheart.1995.268.5.H1875. [DOI] [PubMed] [Google Scholar]
- Kitazawa T. Physiological significance of Ca uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum. J Biochem. 1976 Nov;80(5):1129–1147. doi: 10.1093/oxfordjournals.jbchem.a131369. [DOI] [PubMed] [Google Scholar]
- LeFurgey A., Bond M., Ingram P. Frontiers in electron probe microanalysis: application to cell physiology. Ultramicroscopy. 1988;24(2-3):185–219. doi: 10.1016/0304-3991(88)90311-7. [DOI] [PubMed] [Google Scholar]
- Leapman R. D., Hunt J. A., Buchanan R. A., Andrews S. B. Measurement of low calcium concentrations in cryosectioned cells by parallel-EELS mapping. Ultramicroscopy. 1993 Feb;49(1-4):225–234. doi: 10.1016/0304-3991(93)90229-q. [DOI] [PubMed] [Google Scholar]
- Leisey J. R., Grotyohann L. W., Scott D. A., Scaduto R. C., Jr Regulation of cardiac mitochondrial calcium by average extramitochondrial calcium. Am J Physiol. 1993 Oct;265(4 Pt 2):H1203–H1208. doi: 10.1152/ajpheart.1993.265.4.H1203. [DOI] [PubMed] [Google Scholar]
- Lukács G. L., Kapus A., Fonyó A. Parallel measurement of oxoglutarate dehydrogenase activity and matrix free Ca2+ in fura-2-loaded heart mitochondria. FEBS Lett. 1988 Feb 29;229(1):219–223. doi: 10.1016/0014-5793(88)80831-7. [DOI] [PubMed] [Google Scholar]
- Lukács G. L., Kapus A. Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2. Biochem J. 1987 Dec 1;248(2):609–613. doi: 10.1042/bj2480609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marijic J., Buljubasic N., Stowe D. F., Turner L. A., Kampine J. P., Bosnjak Z. J. Opposing effects of diacetyl monoxime on contractility and calcium transients in isolated myocardium. Am J Physiol. 1991 Apr;260(4 Pt 2):H1153–H1159. doi: 10.1152/ajpheart.1991.260.4.H1153. [DOI] [PubMed] [Google Scholar]
- McCormack J. G., Daniel R. L., Osbaldeston N. J., Rutter G. A., Denton R. M. Mitochondrial Ca2+ transport and the role of matrix Ca2+ in mammalian tissues. Biochem Soc Trans. 1992 Feb;20(1):153–159. doi: 10.1042/bst0200153. [DOI] [PubMed] [Google Scholar]
- McMillin-Wood J., Wolkowicz P. E., Chu A., Tate C. A., Goldstein M. A., Entman M. L. Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta. 1980 Jul 8;591(2):251–265. doi: 10.1016/0005-2728(80)90157-7. [DOI] [PubMed] [Google Scholar]
- Miller T. W., Tormey J. M. Subcellular calcium pools of ischaemic and reperfused myocardium characterised by electron probe. Cardiovasc Res. 1995 Jan;29(1):85–94. [PubMed] [Google Scholar]
- Miyamae M., Camacho S. A., Weiner M. W., Figueredo V. M. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol. 1996 Nov;271(5 Pt 2):H2145–H2153. doi: 10.1152/ajpheart.1996.271.5.H2145. [DOI] [PubMed] [Google Scholar]
- Miyata H., Silverman H. S., Sollott S. J., Lakatta E. G., Stern M. D., Hansford R. G. Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am J Physiol. 1991 Oct;261(4 Pt 2):H1123–H1134. doi: 10.1152/ajpheart.1991.261.4.H1123. [DOI] [PubMed] [Google Scholar]
- Moravec C. S., Bond M. Calcium is released from the junctional sarcoplasmic reticulum during cardiac muscle contraction. Am J Physiol. 1991 Mar;260(3 Pt 2):H989–H997. doi: 10.1152/ajpheart.1991.260.3.H989. [DOI] [PubMed] [Google Scholar]
- Moravec C. S., Bond M. Effect of inotropic stimulation on mitochondrial calcium in cardiac muscle. J Biol Chem. 1992 Mar 15;267(8):5310–5316. [PubMed] [Google Scholar]
- Moravec C. S., Desnoyer R. W., Milovanovic M., Schluchter M. D., Bond M. Mitochondrial calcium content in isolated perfused heart: effects of inotropic stimulation. Am J Physiol. 1997 Sep;273(3 Pt 2):H1432–H1439. doi: 10.1152/ajpheart.1997.273.3.H1432. [DOI] [PubMed] [Google Scholar]
- Mulieri L. A., Hasenfuss G., Ittleman F., Blanchard E. M., Alpert N. R. Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ Res. 1989 Nov;65(5):1441–1449. doi: 10.1161/01.res.65.5.1441. [DOI] [PubMed] [Google Scholar]
- Nichols C. G., Lederer W. J. The role of ATP in energy-deprivation contractures in unloaded rat ventricular myocytes. Can J Physiol Pharmacol. 1990 Feb;68(2):183–194. doi: 10.1139/y90-029. [DOI] [PubMed] [Google Scholar]
- Panov A., Scarpa A. Mg2+ control of respiration in isolated rat liver mitochondria. Biochemistry. 1996 Oct 1;35(39):12849–12856. doi: 10.1021/bi960139f. [DOI] [PubMed] [Google Scholar]
- Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994 Jul;74(3):595–636. doi: 10.1152/physrev.1994.74.3.595. [DOI] [PubMed] [Google Scholar]
- Richter K. A cryoglue to mount vitreous biological specimens for cryoultramicrotomy at 110K. J Microsc. 1994 Feb;173(Pt 2):143–147. doi: 10.1111/j.1365-2818.1994.tb03436.x. [DOI] [PubMed] [Google Scholar]
- Rizzuto R., Bastianutto C., Brini M., Murgia M., Pozzan T. Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol. 1994 Sep;126(5):1183–1194. doi: 10.1083/jcb.126.5.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saavedra-Molina A., Uribe S., Devlin T. M. Control of mitochondrial matrix calcium: studies using fluo-3 as a fluorescent calcium indicator. Biochem Biophys Res Commun. 1990 Feb 28;167(1):148–153. doi: 10.1016/0006-291x(90)91743-c. [DOI] [PubMed] [Google Scholar]
- Scarpa A., Graziotti P. Mechanisms for intracellular calcium regulation in heart. I. Stopped-flow measurements of Ca++ uptake by cardiac mitochondria. J Gen Physiol. 1973 Dec;62(6):756–772. doi: 10.1085/jgp.62.6.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreur J. H., Figueredo V. M., Miyamae M., Shames D. M., Baker A. J., Camacho S. A. Cytosolic and mitochondrial [Ca2+] in whole hearts using indo-1 acetoxymethyl ester: effects of high extracellular Ca2+. Biophys J. 1996 Jun;70(6):2571–2580. doi: 10.1016/S0006-3495(96)79828-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shuman H., Somlyo A. P. Electron energy loss analysis of near-trace-element concentrations of calcium. Ultramicroscopy. 1987;21(1):23–32. doi: 10.1016/0304-3991(87)90004-0. [DOI] [PubMed] [Google Scholar]
- Shuman H., Somlyo A. V., Somlyo A. P. Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy. 1976 Sep-Oct;1(4):317–339. doi: 10.1016/0304-3991(76)90049-8. [DOI] [PubMed] [Google Scholar]
- Siegmund B., Klietz T., Schwartz P., Piper H. M. Temporary contractile blockade prevents hypercontracture in anoxic-reoxygenated cardiomyocytes. Am J Physiol. 1991 Feb;260(2 Pt 2):H426–H435. doi: 10.1152/ajpheart.1991.260.2.H426. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P. Cell calcium measurement with electron probe and electron energy loss analysis. Cell Calcium. 1985 Apr;6(1-2):197–212. doi: 10.1016/0143-4160(85)90044-2. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V., Bond M., Broderick R., Goldman Y. E., Shuman H., Walker J. W., Trentham D. R. Calcium and magnesium movements in cells and the role of inositol trisphosphate in muscle. Soc Gen Physiol Ser. 1987;42:77–92. [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V., Shuman H. Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei, and cytoplasm. J Cell Biol. 1979 May;81(2):316–335. doi: 10.1083/jcb.81.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V., Shuman H., Endo M. Calcium and monovalent ions in smooth muscle. Fed Proc. 1982 Oct;41(12):2883–2890. [PubMed] [Google Scholar]
- Somlyo A. V., Gonzalez-Serratos H. G., Shuman H., McClellan G., Somlyo A. P. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol. 1981 Sep;90(3):577–594. doi: 10.1083/jcb.90.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutko J. L., Kenyon J. L. Ryanodine modification of cardiac muscle responses to potassium-free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release. J Gen Physiol. 1983 Sep;82(3):385–404. doi: 10.1085/jgp.82.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terracciano C. M., MacLeod K. T. Measurements of Ca2+ entry and sarcoplasmic reticulum Ca2+ content during the cardiac cycle in guinea pig and rat ventricular myocytes. Biophys J. 1997 Mar;72(3):1319–1326. doi: 10.1016/S0006-3495(97)78778-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wan B., Doumen C., Duszynski J., Salama G., Vary T. C., LaNoue K. F. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am J Physiol. 1993 Aug;265(2 Pt 2):H453–H460. doi: 10.1152/ajpheart.1993.265.2.H453. [DOI] [PubMed] [Google Scholar]
- Wendt-Gallitelli M. F., Isenberg G. Total and free myoplasmic calcium during a contraction cycle: x-ray microanalysis in guinea-pig ventricular myocytes. J Physiol. 1991 Apr;435:349–372. doi: 10.1113/jphysiol.1991.sp018514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White R. L., Wittenberg B. A. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes. Biophys J. 1995 Dec;69(6):2790–2799. doi: 10.1016/S0006-3495(95)80152-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williford D. J., Sharma V. K., Korth M., Sheu S. S. Spatial heterogeneity of intracellular Ca2+ concentration in nonbeating guinea pig ventricular myocytes. Circ Res. 1990 Jan;66(1):241–248. doi: 10.1161/01.res.66.1.241. [DOI] [PubMed] [Google Scholar]
- Xu T., Naraghi M., Kang H., Neher E. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys J. 1997 Jul;73(1):532–545. doi: 10.1016/S0006-3495(97)78091-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshioka T., Somlyo A. P. Calcium and magnesium contents and volume of the terminal cisternae in caffeine-treated skeletal muscle. J Cell Biol. 1984 Aug;99(2):558–568. doi: 10.1083/jcb.99.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yue D. T., Marban E., Wier W. G. Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle. J Gen Physiol. 1986 Feb;87(2):223–242. doi: 10.1085/jgp.87.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]